检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案
临时登录指令。 以root用户登录本地环境,输入复制的SWR临时登录指令。 上传镜像至容器镜像服务镜像仓库。 使用docker tag命令给上传镜像打标签。 #region和domain信息请替换为实际值,组织名称deep-learning也请替换为自定义的值。 sudo docker
length_penalty表示在beam search过程中,对于较长的序列,模型会给予较大的惩罚。 如果要使用length_penalty,必须添加如下三个参数,并且需将use_beam_search参数设置为true,best_of参数设置大于1,top_k固定为-1。 "top_k":
临时登录指令。 以root用户登录本地环境,输入复制的SWR临时登录指令。 上传镜像至容器镜像服务镜像仓库。 使用docker tag命令给上传镜像打标签。 #region和domain信息请替换为实际值,组织名称deep-learning也请替换为自定义的值。 sudo docker
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Cluster上的训练方案。训练框架使用的是ModelLink。 本方案目前仅适用于企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档介绍了在ModelArts的Standard上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程,利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬件,为用户提供推理部署方案,帮助用户使能大模型业务。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
--user-command String 否 自定义镜像执行命令。需为/home下的目录。 当code-dir以file://为前缀时,当前字段不生效。 --pool-id String 否 训练作业选择的资源池ID。可在ModelArts管理控制台,单击左侧“专属资源池”,在专属资源池列表中查看资源池ID。
Cluster资源池节点故障如何定位 故障说明和处理建议 图1 Lite池故障处理流程 对于ModelArts Lite资源池,每个节点会以DaemonSet方式部署node-agent组件,该组件会检测节点状态,并将检测结果写到K8S NodeCondtition中。同时,节点
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
tar.gz -C /usr/local/buildkit # 授予权限 chmod -R 777 /usr/local/buildkit 添加环境变量 echo 'export PATH=/usr/local/buildkit/bin:$PATH' >> /etc/profile
tar.gz -C /usr/local/buildkit # 授予权限 chmod -R 777 /usr/local/buildkit 添加环境变量 echo 'export PATH=/usr/local/buildkit/bin:$PATH' >> /etc/profile
tar.gz -C /usr/local/buildkit # 授予权限 chmod -R 777 /usr/local/buildkit 添加环境变量 echo 'export PATH=/usr/local/buildkit/bin:$PATH' >> /etc/profile
tar.gz -C /usr/local/buildkit # 授予权限 chmod -R 777 /usr/local/buildkit 添加环境变量 echo 'export PATH=/usr/local/buildkit/bin:$PATH' >> /etc/profile
扩缩容Standard专属资源池 场景介绍 当专属资源池创建完成,使用一段时间后,由于用户AI开发业务的变化,对于资源池资源量的需求可能会产生变化,面对这种场景,ModelArts Standard专属资源池提供了扩缩容功能,用户可以根据自己的需求动态调整。 使用扩容功能时,可以增加资源池已有规格的实例数量。
执行训练任务(推荐) 新的训练方式将统一管理训练日志、训练结果和训练配置,使用yaml配置文件方便用户根据自己实际需求进行修改。推荐用户使用该方式进行训练。 权重文件支持以下组合方式,用户根据自己实际要求选择: 训练stage 不加载权重 增量训练:加载权重,不加载优化器(默认开启)
预训练任务 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
print('Done exporting!') 推理代码(keras接口和tf接口) 在模型代码推理文件customize_service.py中,需要添加一个子类,该子类继承对应模型类型的父类,各模型类型的父类名称和导入语句如请参考表1。本案例中调用父类“_inference(self, d