检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
download.nvidia.com/tesla/470.182.03/NVIDIA-Linux-x86_64-470.182.03.run 添加权限。 chmod +x NVIDIA-Linux-x86_64-470.182.03.run 运行安装文件。 ./NVIDIA-Linux-x86_64-470
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
过SSH登录,不同机器之间网络互通。 购买DevServer资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的
方法二:用户在Notebook中直接编辑scripts/llama2/1_preprocess_data.sh脚本,自定义环境变量的值,并在脚本的首行中添加 cd /home/ma-user/work/llm_train/AscendSpeed/ModelLink 命令,随后在Notebook中运行该脚本。
包年/包月 包年/包月是一种先付费再使用的计费模式,适用于对资源需求稳定且希望降低成本的用户。通过选择包年/包月的计费模式,您可以预先购买云服务资源并获得一定程度的价格优惠。本文将介绍ModelArts资源包年/包月的计费规则。 适用场景 包年/包月计费模式需要用户预先支付一定时
# 创建解析 parser = argparse.ArgumentParser(description='train mnist') # 添加参数 parser.add_argument('--data_url', type=str, default="./Data/mnist.npz"
方法二:用户在Notebook中直接编辑scripts/llama2/1_preprocess_data.sh脚本,自定义环境变量的值,并在脚本的首行中添加 cd /home/ma-user/work/llm_train/AscendSpeed/ModelLink 命令,随后在Notebook中运行该脚本。
扩缩容Lite Cluster资源池 场景介绍 当专属资源池创建完成,使用一段时间后,由于用户AI开发业务的变化,对于资源池资源量的需求可能会产生变化,面对这种场景,ModelArts专属资源池提供了扩缩容功能,用户可以根据自己的需求动态调整。 缩容操作可能影响到正在运行的业务,
0 Float length_penalty表示在beam search过程中,对于较长的序列,模型会给予较大的惩罚。 使用该参数时,必须添加如下三个参数,且必须按要求设置。 top_k:-1 use_beam_search:true best_of:大于1 ignore_eos
过SSH登录,不同机器之间网络互通。 购买DevServer资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的
查看训练作业事件 训练作业的(从用户可看见训练任务开始)整个生命周期中,每一个关键事件点在系统后台均有记录,用户可随时在对应训练作业的详情页面进行查看。 方便用户更清楚的了解训练作业运行过程,遇到任务异常时,更加准确的排查定位问题。当前支持的作业事件如下所示: 训练作业创建成功 训练作业创建失败报错:
9090:32584/TCP 42s 查看Prometheus采集的指标数据 在CCE页面为Prometheus所在节点绑定弹性公网IP,并打开节点的安全组配置,添加入方向规则,允许外部访问9090端口。 如果使用Grafana对接Prometheus制作报表,可以将Grafana部署在集群内,这里不需
Step4 启动AWQ量化服务 参考部署推理服务,使用量化后权重部署AWQ量化服务。 注:Step3 创建服务启动脚本启动脚本中,服务启动命令需添加如下命令。 -q awq 或者--quantization awq 父主题: 推理模型量化
tar.gz -C /usr/local/buildkit # 授予权限 chmod -R 777 /usr/local/buildkit 添加环境变量 echo 'export PATH=/usr/local/buildkit/bin:$PATH' >> /etc/profile
务需要的资产,您可以直接订阅并推送至ModelArts使用。 如果您是发布者,可以将自己开发的AI资产,发布至AI Gallery中,共享给其他用户使用。 发布区域:华北-北京一、华北-北京四、华北-乌兰察布一、华东-上海一、华南-广州、西南-贵阳一、中国-香港 AI Gallery简介
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite DevServer上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
单模型性能调优AOE 使用AOE工具可以在模型转换阶段对于模型运行和后端编译过程进行执行调优,注意AOE只适合静态shape的模型调优。在AOE调优时,容易受当前缓存的一些影响,建议分两次进行操作,以达到较好的优化效果(第一次执行生成AOE的知识库,在第二次使用时可以复用)。在该
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite DevServer上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成
能通过SSH登录,不同机器之间网络互通。 购买Cluster资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的