检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ReadWriteMany:读写方式(默认值) 表6 auto_stop定义数据结构说明 参数 是否必选 参数类型 说明 enable 否 Boolean 是否开启自动停止功能, true表示开启,则会在运行时长到达之后自动停止实例,false表示关闭,默认为false。 duration 否 Integer 运行时
本章节介绍BF16权重转换操作。 BF16获取权重有2种方式: 方式一:直接获取HuggingFace社区已经转换完成的BF16权重。 方式二:基于DeepSeek官网提供的FP8权重转换为BF16权重。 方式一提供的权重是开发者在社区贡献的权重,如果是用于生产环境的业务,建议选择方式二,通过DeepSeek官方发布的FP8权重进行转换。
该问题通常由VS Code安装了第三方中文插件引起。 解决方案 卸载中文插件:如果安装了中文插件,建议先卸载。 如果问题仍未解决,可以在VS Code官方社区查找相关解决方案或更新插件。 父主题: VS Code连接开发环境失败故障处理
第一种,在ModelArts控制台的“总览”界面打开CodeLab,使用的是CPU或GPU资源,无法使用昇腾卡训练。 第二种,如果是AI Gallery社区的Notebook案例,使用的资源是ASCEND的,“Run in ModelArts”跳转到CodeLab,就可以使用昇腾卡进行训练。 也支持切换规格
Serverless化实例管理,资源自动回收 免费算力,规格按需切换 亮点特性1:远程开发 - 支持本地IDE远程访问Notebook Notebook提供了远程开发功能,通过开启SSH连接,用户本地IDE可以远程连接到ModelArts的Notebook开发环境中,调试和运行代码。 对于使用本地IDE的开发者,由于
2-2023.2之间(包含2019.2和2023.2)版本,包括社区版和专业版。 使用PyCharm ToolKit远程连接Notebook开发环境,仅限PyCharm专业版。 使用PyCharm ToolKit提交训练作业,社区版和专业版都支持,PyCharm ToolKit latest版本仅限提交新版训练作业。
ModelArts提供了CodeLab功能,一方面,一键进入开发环境,同时预置了免费的算力规格,可直接免费体验Notebook功能;另一方面,针对AI Gallery社区发布的Notebook样例(.ipynb格式文件),可直接在CodeLab中打开,查看他人分享的样例代码,具体请参见使用CodeLab免费体验Notebook。
使用Advisor工具分析生成调优建议 关于Advisor使用及安装过程请参见昇腾社区Gitee。最后生成导出的各类场景的建议包含以下两种: Terminal日志信息的概览建议。 包含Detail信息及修改示例的HTML信息。 按照建议信息做如下修改: 亲和优化器使能,在train
per-channel Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models
per-channel 步骤一 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models
量化方法:per-group Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models
速构建高性价比的边云协同AI解决方案。 适用于边缘部署场景。 AI Gallery AI Gallery百模千态社区,为用户提供优质的昇腾云AI模型开发体验和丰富的社区资源。 适用于AI开发探索。 产品架构 ModelArts产品架构请参考图1。 图1 ModelArts产品架构
量化方法:per-group Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models
per-channel 步骤一 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models
deLab功能,一方面,一键进入开发环境,同时预置了免费的算力规格,可直接免费体验Notebook功能;另一方面,针对AI Gallery社区发布的Notebook样例(.ipynb格式文件),可直接在CodeLab中打开,查看他人分享的样例代码。 功能亮点 免费算力 CodeL
per-group。 Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models
在专属资源池列表中,单击资源池“ID/名称”,进入详情页。单击右上角“配置NAS VPC”,检查是否开启了NAS VPC。详情页面的“NAS VPC名称”和“NAS 子网ID”如果为空则证明没有开启,单击右上角配置NAS VPC即可。 如果单击开启后报错,可能是由于对应的VPC已经创建了对等连接,删除对等连接即可。
per-group。 Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models
观察上一章Loss趋势,在首个Step有较小偏差,所以对第一个Step进行比对分析。此处使用Msprobe的整网Dump和比对分析功能。 首先安装社区Msprobe工具,命令如下: pip install mindstudio-probe 使能工具进行数据Dump分析。本实验可在train
针对ModelArts中创建的模型,支持以下发布方式: 发布至AI Gallery AI Gallery是在ModelArts的基础上构建的开发者生态社区,提供算法、模型、数据集等内容的共享,为高校科研机构、模型开发商、解决方案集成商、企业级个人开发者等群体,提供安全、开放的共享,加速AI资产的开发与落地。