检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
一区域的华为HiLens控制台注册HiLens Kit设备,详细操作指导请见注册HiLens Kit。 设备名称:显示同一帐号同一区域下注册在华为HiLens控制台的设备列表。 勾选设备处于“在线”状态的设备,然后单击技能名称右侧的“开始安装”,就开始安装技能。 设备列表的进度列
数据集,后续训练模型操作是基于您选择的训练数据集。 选择数据 标注数据(可选) 由于模型训练过程需要大量有标签的数据,如果开发应用时,上传的训练数据集是未标注的,需要对数据集中的数据进行标注。 标注数据 训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练文本分类模型。
提供完善的文本处理能力,支持多种数据格式内容,适配不同场景的业务数据。 可根据使用过程中的反馈持续优化模型。 工作流流程 在“ModelArts Pro>自然语言处理套件”控制台,选择“我的工作流>多语种文本分类工作流”新建应用,详细操作请见新建应用。您可以开发多语种的文本分类应
训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练安全帽检测模型。 前提条件 已创建用于存储数据的OBS桶及文件夹,且数据存储的OBS桶与ModelArts Pro在同一区域,详情请见创建OBS桶。 已在ModelArts Pro控制台选择“HiL
零售商品识别工作流 自主构建高精度的商品识别算法,帮助提高商品新品上线效率,提升消费者体验。 热轧钢板表面缺陷检测工作流 支持自主上传热轧钢板表面图片数据,构建热轧钢板表面缺陷类型的检测模型,用于识别热轧钢板表面图片中的缺陷类型。 云状识别工作流 支持上传多种云状图数据,构建云状的识别模型,用于高
文字识别套件 文字识别套件基于丰富的文字识别算法和行业知识积累,帮助客户快速构建满足不同业务场景需求的文字识别服务,实现多种版式图像的文字信息结构化提取。 文字识别套件当前提供了单模板工作流和多模板工作流,自主构建文字识别模板,识别模板图片中的文字,提供高精度的文字识别模型,保证结构化信息提取精度。
得了该行业套件的公测权限。 申请行业套件的公测权限后,即可进入套件使用相关功能。 进入套件 登录ModelArts Pro控制台,选择行业套件卡片并单击“进入套件”,即可进入行业套件的控制台。 例如单击自然语言处理套件卡片的“进入套件”,即可进入自然语言处理套件的控制台。 图1 进入套件
在“应用监控”页面,您可以查看应用的基本信息,针对不准确的信息,您可以单击“修改”,在右侧弹出的对话框中修改应用的部署信息。 图1 应用基本信息 在线测试应用 在“应用监控”页面,您可以针对“运行中”的应用使用在线测试功能,在“上传测试图片”右侧单击“选择文件”,上传本地的测试图片,下侧会显示预测结果。
在左侧导航栏选择“应用开发>工作台”。 默认进入“我的应用”页签。 在“我的应用”页签下,选择已创建的应用,单击操作列的“查看”。 进入应用详情页,默认进入“应用开发”页签。 图1 查看应用 单击页面上方的“应用监控”。 进入“应用监控”页面,您可以查看当前版本应用的“基本信息”、“在线测试”、“历史版本”和“调用指南”。
命令行程序的用户,obsutil是执行批量处理、自动化任务较好的选择。 如果您的业务环境需要通过API或SDK执行数据上传操作,或者您习惯于使用API和SDK,推荐选择OBS的API或SDK方法创建桶和上传对象。 上述说明仅罗列OBS常用的使用方式和工具,更多OBS工具说明,请参见《OBS工具指南》。
支持换行。 基于已设计好的分类标签准备文本数据。每个分类标签需要准备5个及以上数据,为了训练出效果较好的模型,建议每个分类标签准备100个以上的数据。 针对未标注数据,将待标注的内容放在一个文本文件内,通用文本分类工作流仅支持中文文本内容的分类,其他语种的文本分类请使用多语种文本分类工作流。
在ModelArts Pro控制台界面,单击“自然语言处理”套件卡片的“进入套件”。 进入自然语言处理套件控制台。 在左侧导航栏选择“应用开发>工作台”。 默认进入“我的应用”页签。 在“我的应用”页签下,选择已创建的应用,单击操作列的“查看”。 进入应用详情页,默认进入“应用开发”页签。
文本数据至少包含2个及以上的标签。每个分类标签需要准备5个及以上数据,为了训练出效果较好的模型,建议每个分类标签准备100个以上的数据。 多语种文本分类工作流仅支持对单语种的文本分类,当前支持文本分类的语种包括英语、法语、德语、西班牙语、葡萄牙语、阿拉伯语等。暂不支持对同一文本中含多语种的文本进行分类训练。
符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽
符。 保证图片质量,不能有损坏的图片。目前支持的格式包括JPG、JPEG、PNG、BMP。 不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽
划线下划线外的特殊符号。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。
要提前准备用于模型训练的数据,上传至OBS服务中。 设计车牌标签 首先需要考虑好车牌的标签类型,即希望识别出图片中车牌的一种结果。例如“plate”。 数据集要求 文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。
备用于模型训练的数据,上传至OBS服务中。 数据集要求 文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括jpg、jpeg、bmp、png。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集
文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。 基于已设计好的热轧钢板表面缺陷标签准备图片数据。每个分类标签
保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有材质类型的待定级图片。 为保证训练效果,需要准备至少20张待训练的图片数据,低于20张工作流