检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
OBS目录:指需要导入的数据集已提前存储至OBS目录中。此时需选择用户具备权限的OBS路径,且OBS路径内的目录结构需满足规范,详细规范请参见从OBS目录导入数据规范说明。当前只有“图像分类”、“物体检测”、“表格”、“文本分类”和“声音分类”类型的数据集,支持从OBS目录导
zip压缩包所在路径直接解压 解压命令的更多使用说明可以在主流搜索引擎中查找Linux解压命令操作。 上传本地超大文件(50GB以上)至JupyterLab 不支持在Notebook的JupyterLab中直接上传大小超过50GB的文件。 50GB以上的文件需要先从本地上传到OBS中,
上传远端文件至JupyterLab 在Notebook的JupyterLab中,支持通过远端文件地址下载文件。 要求:远端文件的URL粘贴在浏览器的输入框中时,可以直接下载该文件。 通过JupyterLab打开一个运行中的Notebook。 单击JupyterLab窗口上方导航栏的ModelArts Upload
--port表示服务部署的端口。每个全量/增量推理实例基于配置的端口号(--port)启动服务,并按照global rank_table中的全量实例、增量实例的顺序,对全量推理实例、增量推理实例启动的端口号进行排序,端口之间用`,`分隔开作为该环境变量的输入。当前端口9000是对
--port表示服务部署的端口。每个全量/增量推理实例基于配置的端口号(--port)启动服务,并按照global rank_table中的全量实例、增量实例的顺序,对全量推理实例、增量推理实例启动的端口号进行排序,端口之间用`,`分隔开作为该环境变量的输入。当前端口9000是对
demo.sh方式启动(历史版本) 本章节介绍历史版本的训练任务启动方式。6.3.912版本同时兼容历史版本的训练任务启动方式。 步骤一:上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。
${USER_CONVERTED_CKPT_PATH}训练过程的权重保存路径,加载路径一致。 故障快恢依赖训练过程的权重保存路径。所以如果开启 MA_TRAIN_AUTO_RESUME=1, 则用户指定的权重加载路径${USER_CONVERTED_CKPT_PATH}不能是训练过程的权重保存路径。 步骤三 启动训练脚本
训练前,可以根据实际需要修改超参配置。 微调任务配置,操作同预训练配置类似,不同点为RUN_TYPE类型不同,以及输入输出路径的配置的不同。SFT微调的计算量与预训练基本一致,故配置可以与预训练相同。 表1 SFT全参微调超参配置 参数 值 参数说明 DATASET_PATH /
将HuggingFace权重转换为Megatron格式。此处的HuggingFace权重文件和转换操作结果同时适用于SFT全参微调和LoRA微调训练。 HuggingFace权重转换操作 下载baichuan2-13b的预训练权重和词表文件,并上传到/home/ma-user/w
如果用户指定${user_converted_ckpt_path} 因故障快恢读取权重的优先级最高则训练过程的权重保存路径${output_dir}/saved_checkpoints(加载故障快恢路径) 必须为空,否则此参数无效断点续训失效。 如果就是使用最新的训练权重进行断点续训(暂停+启动场景),那么可以同时指定train_auto_resume
训练前,可以根据实际需要修改超参配置。 微调任务配置,操作同预训练配置类似,不同点为RUN_TYPE类型不同,以及输入输出路径的配置的不同。SFT微调的计算量与预训练基本一致,故配置可以与预训练相同。 表1 SFT全参微调超参配置 参数 值 参数说明 DATASET_PATH /
6分钟时,会发生超时的错误。 图1 报错提示 解决方法 需要保证磁盘IO带宽正常,可以在36分钟内将文件保存到磁盘。单个节点内,最大只有60G(实际应该在40G以下)的文件内容,只要在36分钟内保存完成,就不会报超时错误。 忽略该报错,因为报错不影响实际报错的权重。 父主题: 常见错误原因和解决方法
静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
-size)的设置:需要遵循GBS/MBS的值能够被NPU/(TP×PP×CP)的值进行整除。 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表2所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表2 不同模型推荐的参数与NPU卡数设置
如果用户指定${user_converted_ckpt_path} 因故障快恢读取权重的优先级最高则训练过程的权重保存路径${output_dir}/saved_checkpoints(加载故障快恢路径) 必须为空,否则此参数无效断点续训失效。 如果就是使用最新的训练权重进行断点续训(暂停+启动场景),那么可以同时指定train_auto_resume
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
度失败”的信息时,可根据具体事件信息确定具体问题原因。具体参考链接为工作负载状态异常定位方法。 通过以下命令打印Pod日志信息。 kubectl describe pod ${pod_name} volcano资源调度失败 当volcano的资源出现争抢时,会出现下图中的问题。 解决方法:
mc2融合算子报错 Yi-34B、Qwen1.5系列、GLM4-9B模型执行lora微调策略任务时产生mc2融合算子错误。 图1 mc2融合算子错误 解决方法 修改代码文件:AscendFactory/scripts_modellink/{model_name}/3_training
n量化和kvcache量化。 量化的一般步骤是:1、对浮点类型的权重镜像量化并保存量化完的权重;2、使用量化完的权重进行推理部署。 什么是W4A16量化 W4A16量化方案能显著降低模型显存以及需要部署的卡数(约75%)。大幅降低小batch下的增量推理时延。 约束限制 支持AWQ
训练启动脚本说明和参数配置 本代码包中集成了不同模型的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。 如果用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data