已找到以下 32 条记录
AI智能搜索
产品选择
推荐系统 RES
没有找到结果,请重新输入
产品选择
推荐系统 RES
在搜索结果页开启AI智能搜索
开启
产品选择
没有找到结果,请重新输入
  • 推荐作业有哪几种创建方式? - 推荐系统 RES

    推荐作业有哪几种创建方式? 推荐系统支持如下几种作业创建方式: 通过RES管理控制台创建作业、查看推荐和效果评估结果。详情参见《推荐系统用户指南》。 通过API提交任务并获取结果。详请参见《推荐系统API参考》。 父主题: 基础问题

  • 数据导入 - 推荐系统 RES

    数据导入即读取经过“数据结构”生成数据,对每条数据进行校验。推荐系统保留字段需校验类型和数据合法性、自定义字段校验类型,输出错误报告。如果数据完全符合要求,会生成推荐系统所需要宽表和画像数据。 宽表:推荐系统内部格式,以行为数据为主,将行为数据中涉及到用户数据和物品数据整合成一条数据。 画像

  • 认证鉴权 - 推荐系统 RES

    Token有效期为24小时,需要使用一个Token鉴权时,可以先缓存起来,避免频繁调用。 Token在计算机系统中代表令牌(临时)意思,拥有Token就代表拥有某种权限。Token认证就是在调用API时候将Token加到请求消息头,从而通过身份认证,获得操作API权限。 T

  • ModelArts - 推荐系统 RES

    生技术核心 GO语言深入之道 介绍几个Go语言及相关开源框架插件机制 跟唐老师学习云网络 唐老师将自己对网络理解分享给大家 智能客服 您好!我是有问必答知识渊博智能问答机器人,有问题欢迎随时求助哦! 社区求助 华为云社区是华为云用户聚集地。这里有来自容器服务技术牛人,为您解决技术难题。

  • 应用场景 - 推荐系统 RES

    RES+媒资应用场景 场景描述 媒资推荐场景中,通常对实时性要求比较高,用户产生行为需要得到即时反馈,同时结合用户长期兴趣和短期兴趣进行个性化推荐。 RES提供一站式媒资推荐解决方案,支持针对行为数据实时生成用户兴趣标签,提供离线、近线、在线三层计算,完成千人千面的个性化媒资推荐。

  • 排序策略-离线排序模型 - 推荐系统 RES

    数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 初

  • 基本概念 - 推荐系统 RES

    用户 推荐系统被推荐对象,一般是指使用业务系统客户。例如,某电商客户。 物品 被推荐内容,一般是指业务系统提供给其用户商品。例如,某视频网站视频。 召回策略 召回策略是指通过大数据计算或深度训练生成推荐候选集算法策略。 过滤规则 过滤规则用于生成推荐过滤集,包含黑白名单、

  • 离线数据源 - 推荐系统 RES

    用户需要自己手工创建整理这些表并存储到OBS上。 每张表表结构必须符合推荐系统要求,列名和字段类型需要和规范中保持一致(参考下面的表结构说明)。 每张表中填充数据,必须符合推荐引擎要求。 对于业务数据中无法提供字段可以填NULL。 用户属性表 用户属性表记录用户属性信息,例如地域、爱好等,属性名和属性值成对出现。

  • 查询训练作业 - 推荐系统 RES

    查询训练作业 功能介绍 查询resource_id(数据源id或场景id)下指定类型作业。 调试 您可以在API Explorer中调试该接口。 URI GET /v2.0/{project_id}/workspaces/{workspace_id}/resources/{r

  • 实时日志 - 推荐系统 RES

    实时日志 RES根据实时发送到DIS上日志,进行数据计算和处理,更新用户相关数据。用户发送到DIS上数据具体如下: 实时行为日志 实时行为日志作用包括: 更新用户兴趣标签。 记录所选行为类型历史记录。 更新用户上下文信息。 召回候选集。 表1 实时行为日志字段描述 字段名

  • 基础问题 - 推荐系统 RES

    什么是RES? 与其他云服务关系 如何开始使用RES? 获取访问密钥(AK/SK) 推荐作业有哪几种创建方式? 创建场景是否会立即发布? 最小在线并发规格支持弹性伸缩,是否设置最小规格即可? 是否有样例数据支撑我进一步了解RES? 什么是区域、可用区? API查询列表接口返回结果是否支持分页?

  • 近线作业 - 推荐系统 RES

    特征名称:值为时间戳(10位)特征名称,任务会根据此特征对候选集进行排序。 推荐天数:推荐数据时间段,该时间段从当前开始往前推N天,默认15天。 默认热度排序。 候选集最大长度 生成候选集最大长度,每次计算更新候选集中个数不会超过最大值。 默认50。 候选集召回策略 召回候选集策略。

  • 构造请求 - 推荐系统 RES

    对于获取用户Token接口,您可以从接口请求部分看到所需请求参数及参数说明。将消息体加入后请求如下所示,加粗斜体字段需要根据实际值填写,其中username为用户名,domainname为用户所属账号名称,********为用户登录密码,xxxxxxxxxx为project名称,如“cn-n

  • 准备离线数据源 - 推荐系统 RES

    itemType String 物品类型。 是 itemId String 对应行为发生对象值。如果是和物品发生关系,则是物品id(itemId)值。 是 actionType String 行为类型,包括正向行为和负向行为。下面为预置行为类型和对应权重,权重有默认分数,默认

  • 自定义场景(热度推荐) - 推荐系统 RES

    在“test-data”文件夹下,将behavior.txt中每条数据actionTime字段值修改到当前时间附近。将item.txt中每条数据publishTime字段值修改到当前时间附近,将item.txt中每条数据expireTime字段值修改成大于当前时间值,避免数据因为过期被过滤掉。

  • 过滤规则 - 推荐系统 RES

    过滤规则 过滤规则用于配置候选集过滤方式,使之不进入候选集。对于每个需要过滤行为,生成用户具有该行为物品列表。再对同用户每种行为物品列表进行“与”或者“或”关系,最终生成用户-物品过滤表。 表1 过滤规则参数说明 参数名称 说明 名称 自定义过滤规则名称。由中文、英

  • 过滤规则 - 推荐系统 RES

    会自动生成一个JSON格式配置源文件,该文件存储在指定OBS路径中,计算引擎可以通过读取配置源文件来进行离线计算。 资源名,指定DLI运行作业资源规格。 存储平台 服务名称,CloudTable作为存储平台,用于用户推荐在线数据和推荐候选集存储。 集群名称,选择“资源中心”绑定CloudTable集群名称。

  • 召回策略 - 推荐系统 RES

    UserCF算法生成用户-物品列表候选集。 基于交替最小二乘矩阵分解推荐 基于交替最小二乘矩阵分解推荐:基于用户-物品行为信息作为原始矩阵,利用ALS优化算法对原始矩阵进行矩阵分解,分解之后用户隐向量矩阵和物品隐向量矩阵可以用来生成预估用户-物品评分矩阵,提取出评分最高若干个物品作为召回结果。

  • 服务总览信息 - 推荐系统 RES

    您可以在RES管理控制台总览页查看服务最新动态、了解作业状态、快捷创建服务。 登录RES管理控制台,单击左侧导航栏上“总览”,进入总览页面。 总览界面包括“最新动态”、“视频教程”和“常用链接”,如图1所示。其中,在最新动态可查看所创建“离线作业”、“近线作业”和“在线服务”名称、状态和创建时间。

  • 召回策略 - 推荐系统 RES

    topK 用户最感兴趣排序在前K个物品。 行为 行为类型:用户感兴趣行为类型。 权重值:行为初始权重。 衰减系数:用于衰减行为初始权重系数。 有效时间:用户配置行为发生时间与当前时间间隔,以小时为单位。系统只处理在该时间范围内行为记录。 基于用户相似度实时召回 基于用