检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
作。 选择左侧“数据工程 > 数据加工”,单击右上角“创建加工数据集”。 在“来源数据集”分页,选择“文件内容”为“单轮问答”的数据集,填写数据集名称和描述,单击“下一步”。 图2 选择数据集 在加工步骤编排页面展示了预先设置好的开始、结束步骤。在左侧“添加算子”分页可选择合适的算子,如个人数据脱敏、文本长度过滤等。
模型训练:在模型开发的第一步,ModelArts Studio大模型开发平台为用户提供了丰富的训练工具与灵活的配置选项。用户可以根据实际需求选择合适的模型架构,并结合不同的训练数据进行精细化训练。平台支持分布式训练,能够处理大规模数据集,从而帮助用户快速提升模型性能。 模型压缩:在
表1 NLP大模型训练常见报错与解决方案 常见报错 问题现象 原因分析 解决方案 创建训练任务时,数据集列表为空 创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。 请提前创建与大模型对应的训练数据集,并完成数据集发布操作。 训练日志提示“root: XXX
根据授权项策略,系统会自动推荐授权范围方案。 可以选择“所有资源”,即用户组内的IAM用户可以基于设置的授权项限使用账号中所有的企业项目、区域项目、全局服务资源。 可以选择“指定区域项目资源”,如指定“西南-贵阳一”区域,即用户组内的IAM用户仅可使用该区域项目中的资源。 可以选择“全局服务资源”,即服务
Content 服务器成功处理了部分GET请求。 300 Multiple Choices 多种选择。请求的资源可包括多个位置,相应可返回一个资源特征与地址的列表用于用户终端(例如:浏览器)选择。 301 Moved Permanently 永久移动,请求的资源已被永久的移动到新的URI,返回信息会包括新的URI。
程见表2。 表2 盘古NLP大模型数据集构建流程 流程 子流程 说明 操作指导 导入数据至盘古平台 创建原始数据集 数据集是指用于模型训练或评测的一组相关数据样本,上传至平台的数据将被创建为原始数据集进行统一管理。 创建原始数据集 上线原始数据集 在正式发布数据集前,需要执行上线操作。
知识问答:对于文本生成场景(开放问答、基于搜索内容回答等),从客观上来说,回答需要是确定且唯一的,建议降低“温度”或“核采样”的值(二者选其一调整)。若需要每次生成完全相同的回答,可以将“温度”置为0。 参数的选择没有标准答案,您需要根据任务的实际情况进行调整,以上建议值仅供参考。 父主题: 大模型微调训练类问题
输入插件名称及插件描述,单击“下一步”。 图2 创建插件 填写插件的URL(准备工作中获取的文本翻译API调用地址),选择请求方式为“POST”。权限校验选择“用户级鉴权 > Header”,填写密钥鉴权参数名为X-Auth-Token、密钥来源参数名为X-Auth-Token
操作流程 登录ModelArts Studio大模型开发平台,进入所需空间。 获取调用路径及部署ID。单击左侧“模型开发 > 模型部署”,选择所需调用的NLP大模型,单击“调用路径”,在“调用路径”弹窗获取调用路径及部署ID。 图1 获取调用路径和部署ID 获取项目ID。在页面右
创建NLP大模型部署任务”。 操作流程 登录ModelArts Studio大模型开发平台,进入所需空间。 单击左侧“能力调测”,进入“文本对话”页签,选择服务与人设,参数设置为默认参数,在输入框输入问题,单击“生成”,模型将基于问题进行回答。 图1 使用预置服务进行文本对话 可以尝试修改参数以查看模型效果,示例如下:
["用微波炉热汤要盖盖子吗? 判断以上问题是否需要调用检索,请回答“是”或”否“"], "target": "否"} {"context ": ["福田区支持哪些组织开展退役军人教育培训工作? 判断以上问题是否需要调用检索,请回答“是”或“否”"], "target ": "是"} 问答模块:准备单轮问答和检索增强的数据集。
T8量化、断点续训、在线推理、能力调测、边缘部署特性。 在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评测、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古NLP大模型支持的具体操作: 表2 盘古NLP大模型支持的能力
9B3,支持1个训练单元训练及1个推理单元部署。 在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评测、模型压缩、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古科学计算大模型支持的具体操作: 表2
租户提供通用云服务的Region;专属Region指只承载同一类业务或只面向特定租户提供业务服务的专用Region。 详情请参见区域和可用区。 可用区(AZ,Availability Zone) 一个AZ是一个或多个物理数据中心的集合,有独立的风火水电,AZ内逻辑上再将计算、网络
对于训练异常或失败的任务也可以通过训练日志定位训练失败的原因。典型训练报错和解决方案请参见NLP大模型训练常见报错与解决方案。 训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行并行处理,每个工作节点负责处理一部分数据或执行特定的计算
测未来的降雨情况,农民和农业管理者可以更有效地规划灌溉时间和频率,也能为可能发生的干旱提供预警,使农业部门能够及时采取措施,如推广节水技术或调整种植计划。
金融场景下,NL2JSON能力可以有效消除用户语义歧义性,提高数据处理的灵活性和便利性,降低人力开发成本、提升交付效率和查询性能,同时赋能精细化运营。 选择基模型/基础功能模型 盘古-NLP-N2-基础功能模型 准备训练数据 本场景不涉及自监督训练,无需准备自监督数据。 微调数据来源: 来源一:真实业务场景数据。
一种替代温度采样的方法,称为nucleus sampling,其中模型考虑具有top_p概率质量的标记的结果。通常建议更改此值或温度,但不要同时更改两者。通常建议更改top_p或temperature来调整生成文本的倾向性,但不要同时更改这两个参数。 取值范围:(0, 1] 缺省值:N1模型为0
表达出来,会让生成效果更加符合预期。说明需要逻辑清晰、无歧义。 设计任务要求 要求分点列举: 要求较多时需要分点列举,可以使用首先\然后,或1\2\3序号分点提出要求。每个要求步骤之间最好换行(\n)分隔断句,单个要求包含一项内容,不能太长。 正负向要求分离: 正负向要求不要掺杂
云容器引擎-成长地图 | 华为云 盘古大模型 盘古大模型服务(PanguLargeModels)致力于深耕行业,打造多领域行业大模型和能力集。盘古大模型能力通过ModelArts Studio大模型开发平台承载,它提供了包括盘古大模型在内的多种大模型服务,提供覆盖全生命周期的大模型工具链。