检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
查看训练任务详情与训练指标 模型启动训练后,可以在模型训练列表中查看训练任务的状态,单击任务名称可以进入详情页查看训练指标、训练任务详情和训练日志。 图1 模型训练列表 不同类型的训练方法可支持查看的训练指标有所差异,训练指标和训练方法的关系如下: 表1 训练指标和训练方法对应关系
传输请求的协议,当前所有API均采用HTTPS协议。 Endpoint 承载REST服务端点的服务器域名或IP。 resource-path 资源路径,即API访问路径。从具体API的URI模块获取。 query-string 查询参数,可选,查询参数前面需要带一个“?”,形式为“参数名=参数取值”。 参考终端节点章
查看评估任务详情 查看评估任务详情 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型评估”。 单击任务名称查看模型评估任务详情。包含基本信息、评估详情、评估报告、评估日志以及数据配置。 图1 任务详情界面 任务详情: 任务详情中包含打分模式、评估资源、评估模型、任务状态以及模型描述。
AK/SK认证:通过AK(Access Key ID)/SK(Secret Access Key)加密调用请求。 Token认证 Token在计算机系统中代表令牌(临时)的意思,拥有Token就代表拥有某种权限。Token认证就是在调用API的时候将Token加到请求消息头,从而通过身份认证,获得操作API的权限。
开通API 登录盘古大模型套件平台。 在左侧导航栏中选择“服务管理”,在相应服务的操作列单击“查看详情”,可在服务列表中申请需要开通的服务。 文本补全:给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全。例如让模型依据要求写邮件、做摘要总结、生成观点见解等。 多轮
如何评估微调后的模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进
查看提示词评估结果 评估任务创建完成后,会跳转至“评估”页面,在该页面可以查看评估状态。 图1 查看评估状态 单击评估名称,进入评估任务详情页,可以查看详细的评估进度。例如,在图2中有10条评估用例,当前已经评估了8条,剩余2条待评估。 图2 查看评估进展 评估完成后,进入“评估
如何调用REST API 开通API 构造请求 认证鉴权 返回结果
到了宋朝。他身处一座繁华的城市,人们穿着古代的服饰,用着他听不懂的语言交谈。他意识到自己真的穿越了。李晓在宋朝的生活充满了挑战。他必须学习如何使用新的语言,适应新的生活方式。他开始学习宋朝的礼仪,尝试理解这个时代的文化。在宋朝,李晓遇到了许多有趣的人。他遇到了一位名叫赵敏拿来的小
如何判断训练状态是否正常 判断训练状态是否正常,通常可以通过观察训练过程中Loss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化趋势。一般
如何调整推理参数,使模型效果最优 推理参数(解码参数)是一组用于控制模型生成预测结果的参数,其可以用于控制模型生成结果的样式,如长度、随机性、创造性、多样性、准确性和丰富度等等。 当前,平台支持的推理参数包括:温度、核采样以及话题重复度控制,如下提供了这些推理参数的建议值和说明,供您参考:
应用介绍 基础的大语言模型问答场景。涉及模型问答,流式效果等相关特性。 环境准备 python3.9 及以上版本。 安装依赖的组件包, pip install pangu_kits_app_dev_py gradio。 盘古大语言模型。 开发实现 创建配置文件llm.properties,
调用AI助手API 获取AI助手API调用地址 登录盘古大模型套件平台。 左侧导航栏选择“应用开发 > AI助手”,选择需要运行的AI助手,单击“查看”。 图1 查看AI助手 在详情页面,AI助手API调用地址。 图2 获取调用地址 获取Token 本示例中,通过使用Postman软件获取Token。
如何调整训练参数,使模型效果最优 模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。
切割长文本,利用大模型逐步总结,如对会议/报告/文章等总结概述。涉及长文本分割、摘要等相关特性。 环境准备 python3.9 及以上版本。 安装依赖的组件包, pip install pangu_kits_app_dev_py gradio python-docx。 盘古大语言模型。 开发实现 创建配置文件llm
langchain-openai): pip install pangu_kits_app_dev_py[all] cache相关依赖: pip install redis~=4.5.5 pip install gptcache~=0.1.37 pip install redis-om~=0.1.3 pip install
提供的方法进行调用。本章节将介绍如何使用Postman调用API,仅供测试使用。 前提条件 使用API调用模型前,请先完成盘古大模型服务订购和开通操作。 使用Postman调用API 获取API请求地址。 在“服务管理”页面,单击所需API的“查看详情”按钮。 图1 服务管理 在
训练智能客服系统大模型需要考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、
info查看驱动是否已安装。如果有回显npu卡信息,说明驱动已安装。 详情请参见昇腾官方文档。 hccn too网卡配置。 执行如下命令,查看是否有回显网卡信息。如果有,则说明网卡已经配置,否则继续操作下面步骤。 cat /etc/hccn.conf 执行如下命令,查看npu卡数。
无监督的领域知识数据,量级无法支持增量预训练,如何让模型学习 一般来说,建议采用增量预训练的方式让模型学习领域知识,但预训练对数据量的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。