检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。 这里提供了一些将无监督数据转换为有监督数据的方案,供您参考: 基于规则构建:您可以通过采用一些简单的规则来构建有监督数据。比如: 表1 采用规则将无监督数据构建为有监督数据的常用方法
功能总览 功能总览 全部 数据工程套件 模型开发套件 应用开发套件 能力调测 应用百宝箱 数据工程套件 数据工程套件作为盘古大模型的重要组成部分,具备数据获取、清洗、配比和管理等功能。该套件能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。 通过提供自动化的质量检测
清洗算子功能介绍 数据清洗是提高数据质量的重要环节,包括去除异常的字符、去除表情符号和去除个人敏感内容等,经过清洗的数据可以提升训练阶段的稳定性。 平台支持通过以下清洗能力: 表1 清洗算子说明 算子类型 功能 说明 数据转换 全角转半角 将文本中的所有全角字符转换成半角字符。 中文繁简体互转
如何评估微调后的模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进
体验盘古大模型功能 申请体验盘古大模型服务 体验盘古预置模型能力 体验盘古驱动的应用百宝箱
体验盘古大模型功能 申请体验盘古大模型服务 体验盘古预置模型能力 体验盘古驱动的应用百宝箱
”。 如图1,能力调测页面提供了文本补全和多轮对话功能,且每种功能都提供了预置的盘古大模型供用户体验。用户可以在页面右侧进行参数设置,然后在输入框中输入问题,模型就会返回对应的答案内容,具体参数信息见表1。 图1 体验预置模型功能 表1 能力调测参数信息表 参数名称 描述 温度
盘古自然语言大模型的适用场景有哪些 自然语言处理大模型是一种参数量极大的预训练模型,是众多自然语言处理下游任务的基础模型。学术界和工业界的实践证明,随着模型参数规模的增加,自然语言处理下游任务的效果显著提升,这得益于海量数据、大量算力以及深度学习的飞跃发展。 基于自然语言处理大模
”。 如图1,能力调测页面提供了文本补全和多轮对话功能,且每种功能都提供了预置的盘古大模型供用户体验。用户可以在页面右侧进行参数设置,然后在输入框中输入问题,模型就会返回对应的答案内容,具体参数信息见表1。 图1 体验预置模型功能 表1 能力调测参数信息表 参数名称 描述 温度
盘古大模型为用户提供了五大模型的体验,包括NLP大模型、CV大模型、多模态大模型、预测大模型与科学计算大模型,用户可根据所需提交体验申请,申请通过后才可以体验盘古大模型功能。 登录盘古大模型套件平台。 在服务“总览”页面,单击“立即体验”,平台将跳转至盘古大模型体验申请页面。 图1 立即体验 您可以选择希望体
盘古大模型为用户提供了五大模型的体验,包括NLP大模型、CV大模型、多模态大模型、预测大模型与科学计算大模型,用户可根据所需提交体验申请,申请通过后才可以体验盘古大模型功能。 登录盘古大模型套件平台。 在服务“总览”页面,单击“立即体验”,平台将跳转至盘古大模型体验申请页面。 图1 立即体验 您可以选择希望体
如何判断训练状态是否正常 判断训练状态是否正常,通常可以通过观察训练过程中Loss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化趋势。一般
大模型是否可以自定义人设 大模型支持设置人设,在用户调用对话问答(chat/completions)API时,可以将“role”参数设置为system,让模型按预设的人设风格回答问题。例如,以下示例要求模型以幼儿园老师的风格回答问题。 { "messages": [
前往”,页面将跳转至外部应用页面供用户体验。 图3 外部应用页面 图4 体验外部应用-1 图5 体验外部应用-2 父主题: 体验盘古大模型功能
前往”,页面将跳转至外部应用页面供用户体验。 图3 外部应用页面 图4 体验外部应用-1 图5 体验外部应用-2 父主题: 体验盘古大模型功能
搭建数据清洗流程 将算子拖拽至“输入”、“输出”之间,即可完成清洗流程的搭建,搭建过程中可以通过“执行节点”功能查看算子对数据的清洗效果。算子功能的详细介绍请参见清洗算子功能介绍。 图3 执行节点 用户配置算子后推荐增加、显示备注信息,用于团队其他成员快速了解算子编排。 图4 增加并显示备注信息
配置AI助手工具 各种功能的API经封装后,将形成一个个工具,AI助手通过大模型来调用不同的工具,实现相应的功能。在创建AI助手前,需要将使用的功能封装为工具。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 工具管理”,单击页面右上角“创建工具”。 图1 工具管理
统计模型调用量 模型调用成功后,有两种方式可以查看模型的调用量。 通过“服务管理”功能查看调用量:查看具体某个模型的调用总量、调用成功量、调用失败量,且可按时间进行筛选。 通过“运营面板”功能查看调用量:查看全部模型访问总数、模型回复时的响应时长、兜底回复比例以及输入/输出token信息。
压缩盘古大模型 N2基础功能模型、N4基础功能模型、经有监督微调训练以及RLHF训练后的N2、N4模型可以通过模型压缩技术在保持相同QPS目标的情况下,降低推理时的显存占用。 采用INT8的压缩方式,INT8量化可以显著减小模型的存储大小与降低功耗,并提高计算速度。 模型经过量化
训练智能客服系统大模型需要考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使