检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
打造政务智能问答助手 场景介绍 大模型(LLM)通过对海量公开数据(如互联网和书籍等语料)进行大规模无监督预训练,具备了强大的语言理解、生成、意图识别和逻辑推理能力。这使得大模型在智能问答系统中表现出色:用户输入问题后,大模型依靠其强大的意图理解能力和从大规模预训练语料及通用SF
全角转半角:将文本中的全角字符转换为半角字符。 标点符号归一化,支持统一格式的符号如下: {"?": "\?\?"} {"[":"〖"} {"]":"〗"} 数字符号归一化,例如将⓪|||⓿|统一为0.。支持统一格式的符号如下: {"0.": "⓪|||⓿|"} {"1.":
含mp4或avi格式的视频。 单个文件大小不超过50GB,文件数量最多1000个。 事件检测 视频+json 数据源样本为avi、mp4格式,标注文件为json格式。必须包含两个及以上后缀名字为avi或者mp4的文件。 每个视频时长要大于128s,FPS>=10,且测试集训练集都要有视频。
数据工程介绍 数据工程介绍 数据工程是ModelArts Studio大模型开发平台(下文简称“平台”)为用户提供的一站式数据处理与管理功能,旨在通过系统化的数据获取、加工、发布等过程,确保数据能够高效、准确地为大模型的训练提供支持,帮助用户高效管理和处理数据,提升数据质量和处理效率,为大模型开发提供坚实的数据基础。
位训练失败的原因。典型训练报错和解决方案请参见CV大模型训练常见报错与解决方案。 训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行并行处理,每个工作节点负责处理一部分数据或执行特定的计算任务。日志也可以按照不同的工作节点(如work
图1 Loss曲线 通过观察,该Loss曲线随着迭代步数的增加呈下降趋势直至稳定,证明整个训练状态是正常的。若Loss曲线呈现轻微阶梯式下降,为正常现象。 模型持续优化: 本场景采用了下表中的推理参数进行解码,您可以在平台部署后参考如下参数调试: 表3 推理核心参数设置 推理参数
练失败的原因。典型训练报错和解决方案请参见科学计算大模型训练常见报错与解决方案。 训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行并行处理,每个工作节点负责处理一部分数据或执行特定的计算任务。日志也可以按照不同的工作节点(如work
训练失败的原因。典型训练报错和解决方案请参见NLP大模型训练常见报错与解决方案。 训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行并行处理,每个工作节点负责处理一部分数据或执行特定的计算任务。日志也可以按照不同的工作节点(如work
”的值(二者选其一调整)。若发现生成的文本过于发散,可以降低“话题重复度控制”的值,保证内容统一;反之若发现内容过于单一,甚至出现了复读机式的重复内容生成,则需要增加“话题重复度控制”的值。 知识问答:对于文本生成场景(开放问答、基于搜索内容回答等),从客观上来说,回答需要是确定
位训练失败的原因。典型训练报错和解决方案请参见预测大模型训练常见报错与解决方案。 训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行并行处理,每个工作节点负责处理一部分数据或执行特定的计算任务。日志也可以按照不同的工作节点(如work
NLP大模型训练流程与选择建议 NLP大模型训练流程介绍 NLP大模型的训练分为两个关键阶段:预训练和微调。 预训练阶段:在这一阶段,模型通过学习大规模通用数据集来掌握语言的基本模式和语义。这一过程为模型提供了处理各种语言任务的基础,如阅读理解、文本生成和情感分析,但它还未能针对特定任务进行优化。
数据存储和管理能力,为大模型训练提供坚实的数据支持。 模型开发工具链:模型开发工具链是盘古大模型服务的核心组件,提供从模型创建到部署的一站式解决方案,涵盖模型训练、压缩、部署、评测、调用等功能,保障模型的高效应用。 应用开发工具链:应用开发工具链是盘古大模型平台的重要模块,支持提
编排工作流 Agent平台支持对工作流编排多个节点,以实现复杂业务流程的编排。 工作流包含两种类型: 对话型工作流。面向多轮交互的开放式问答场景,基于用户对话内容提取关键信息,输出最终结果。适用于客服助手、工单助手、娱乐互动等场景。 任务型工作流。面向自动化处理场景,基于输入内容