检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
平台支持创建预测类数据集,创建时可导入时序数据、回归分类数据。 时序数据:时序预测数据是一种按时间顺序排列的数据序列,用于预测未来事件或趋势,过去的数据会影响未来的预测。 回归分类数据:回归分类数据包含多种预测因子(特征),用于预测连续变量的值,与时序数据不同,回归分类数据不要求数据具有时间顺序。 具体格式要求详见表1。
如何分析大模型输出错误回答的根因 大模型的输出过程通常是一个黑盒,涉及数以亿计甚至千亿计的参数计算,虽然这些参数共同作用生成输出,但具体的决策机制并不透明。 可以通过在提示词中引导模型输出思考过程,或者在模型输出后追问模型,帮助我们分析错误的根因。例如: “我注意到你犯了xxx的错误,请解释得出该结论的原因。”
为什么微调后的盘古大模型只能回答训练样本中的问题 当您将微调的模型部署以后,输入一个已经出现在训练样本中的问题,模型生成的结果很好,一旦输入了一个从未出现过的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制
为什么微调后的盘古大模型总是重复相同的回答 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成了复读机式的结果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或
已经完成的预训练的基础上继续训练模型。增量预训练旨在使模型能够适应新的领域或数据需求,保持其长期的有效性和准确性。 微调阶段:基于预训练的成果,微调阶段通过在特定领域的数据集上进一步训练,使模型能够更有效地应对具体的任务需求。这一阶段使模型能够精确执行如文案生成、代码生成和专业问
2024年12月发布的版本,支持识别数据集中不符合预期模式或行为的数据点。 Pangu-Predict-Table-TimSeries-2.0.0 该模型属于时间序列预测模型,用于基于时间序列数据预测未来值。 生成计划排期:根据历史生产数据和市场需求,预测未来的生产需求,优化生产计划。
2024年11月发布的版本,支持8K序列长度训练,4K/32K序列长度推理。全量微调、LoRA微调8个训练单元起训,1个推理单元即可部署。 Pangu-NLP-N1-Chat-128K-20241130 128K 4K 2024年11月发布的版本,仅支持128K序列长度推理。 Pan
提示词是用来引导模型生成的一段文本。撰写的提示词应该包含任务或领域的关键信息,如主题、风格、格式等。 撰写提示词时,可以设置提示词变量。即在提示词中通过添加占位符{{ }}标识表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,将提示词设置为“你是一个旅游助
30 2024年11月发布的版本,支持4K序列长度推理,支持4个推理单元部署。 Pangu-NLP-BI-32K-20241130 2024年11月发布的版本,支持32K序列长度推理,支持8个推理单元部署。 在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型
数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减小其中一个参数的值,可以提升模型回答的确定性,避免生成异常内容。
为什么微调后的盘古大模型的回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增
训练预测大模型时,所需的数据通常为表格格式,即由行和列组成的扁平化数据。具体要求如下: 行:每行代表一个样本。每行与其他行具有相同的列,并且顺序相同,这些行通常按照某种特定顺序排列。 列:每列表示一种特征。每列的数据类型应保持一致,不同列可以具有不同的数据类型。 顺序:表格中的行通常按照特定顺序排列。
2024年12月发布的版本,支持分析历史数据中的特征与类别的关系,学习出一种映射规则或函数,然后应用这个规则对未来未知的数据点进行分类。 Pangu-Predict-Table-Reg-2.0.0 2024年12月发布的版本,支持根据已知的输入变量(特征)来预测一个连续型输出变量(目标变量)。
cls1样本aa和cls2的样本cc。 每个样本文件夹(如 aa)可以视为一个视频片段,其中每张图片代表视频的一个帧,将这些帧作为一个序列来学习视频分类,有助于模型学习视频的时序特征,从而进行准确的分类。 物体检测数据集标注文件说明 该说明适用于表1中的物体检测标注文件格式。 物
生成的内容结尾必须要引导观众购买; 6.生成的内容必须紧扣产品本身,突出产品的特点,不能出现不相关的内容; 7.生成的内容必须完整,必须涵盖产品介绍中的每个关键点,不能丢失任何有价值的细节; 8.生成的内容必须符合客观事实,不能存在事实性错误; 9.生成的内容必须语言通顺; 10.生成的内容中不能出现“带货口播”等这一类字样;
科技行业公司的最大利润和市值是多少? 科技行业公司的最小利润和市值是多少? 科技行业公司的中位利润和市值是多少? 科技行业公司的总利润和市值是多少? … 来源四:基于大模型的数据泛化。基于目标场任务的分析,通过人工标注部分数据样例,再基于大模型(比如盘古提供的任意一个规格的基础功能模
模型基于简单prompt的生成可能是多范围的各方向发散的,如果您需要进行范围约束,或加强模型对已有信息的理解,可以进行提示:“结合xxx领域的专业知识...理解/生成...”、“你需要联想与xxx相关的关键词、热点信息、行业前沿热点等...生成...”,或者可以说明已有的信息是什么领域的信息,比
均得分。 goodcase 模型生成句子与实际句子基于评估指标得到的评分后,统计得分为5分的占比。 badcase 模型生成句子与实际句子基于评估指标得到的评分后,统计得分1分以下的占比。 用户自定义的指标 由用户定义的指标,如有用性、逻辑性、安全性等。 父主题: 评测NLP大模型
管理发布后的数据集 完成数据配比、或数据流通任务的数据集,在对应任务列表执行“生成”操作,将生成“发布数据集”被平台统一管理,并用于后续的发布任务。 平台支持对发布数据集查看基本信息、数据血缘等管理操作,具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。
json解析报错 服务端返回的数据格式不符合json格式,导致sdk侧解析json数据报错。 服务端返回的json数据不符合json反序列化的规则,和sdk定义的数据结构不一致,导致反序列化失败。 sdk json数据解析问题。 建议排查服务端返回的数据是否和服务SDK设计的结构、字段一致。