华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    caffe深度学习标记 内容精选 换一换
  • 深度学习

    华为云计算 云知识 深度学习 深度学习 时间:2020-11-23 16:30:56 深度学习( Deep Learning,DL)是机器学习的一种,机器学习是实现人工智能的必由之路。深度学习的概念源于人工神经网络的研究,包含多个隐藏层的多层感知器就是深度学习结构。深度学习通过组合低层特

    来自:百科

    查看更多 →

  • 深度学习概览

    华为云计算 云知识 深度学习概览 深度学习概览 时间:2020-12-17 10:03:07 HCIA-AI V3.0系列课程。本课程主要讲述深度学习相关的基本知识,其中包括深度学习的发展历程、深度学习神经 网络的部件、深度学习神经网络不同的类型以及深度学习工程中常见的问题。 目标学员

    来自:百科

    查看更多 →

  • caffe深度学习标记 相关内容
  • 大V讲堂——双向深度学习

    大V讲堂——双向深度学习 大V讲堂——双向深度学习 时间:2020-12-09 14:52:19 以当今研究趋势由前馈学习重新转入双向对偶系统为出发点,从解码与编码、识别与重建、归纳与演绎、认知与求解等角度,我们将概括地介绍双向深度学习的历史、发展现状、应用场景,着重介绍双向深度学习理论、算法和应用示例。

    来自:百科

    查看更多 →

  • 从MindSpore手写数字识别学习深度学习

    从MindSpore手写数字识别学习深度学习 从MindSpore手写数字识别学习深度学习 时间:2020-11-23 16:08:48 深度学习作为机器学习分支之一,应用日益广泛。 语音识别 、自动 机器翻译 、即时视觉翻译、刷脸支付、人脸考勤……不知不觉,深度学习已经渗入到我们生活中的每个

    来自:百科

    查看更多 →

  • caffe深度学习标记 更多内容
  • AI技术领域课程--深度学习

    类的水平。本课程将介绍深度学习算法的知识。 课程简介 本课程将会探讨深度学习中的基础理论、算法、使用方法、技巧与不同的深度学习模型。 课程目标 通过本课程的学习,使学员: 1、掌握神经网络基础理论。 2、掌握深度学习中数据处理的基本方法。 3、掌握深度学习训练中调参、模型选择的基本方法。

    来自:百科

    查看更多 →

  • 大V讲堂——能耗高效的深度学习

    华为云计算 云知识 大V讲堂——能耗高效的深度学习 大V讲堂——能耗高效的深度学习 时间:2020-12-08 10:09:21 现在大多数的AI模型,尤其是计算视觉领域的AI模型,都是通过深度神经网络来进行构建的,从2015年开始,学术界已经开始注意到现有的神经网络模型都是需要

    来自:百科

    查看更多 →

  • 基于深度学习算法的语音识别

    华为云计算 云知识 基于深度学习算法的语音识别 基于深度学习算法的语音识别 时间:2020-12-01 09:50:45 利用新型的人工智能(深度学习)算法,结合清华大学开源语音数据集THCHS30进行语音识别的实战演练,让使用者在了解语音识别基本的原理与实战的同时,更好的了解人工智能的相关内容与应用。

    来自:百科

    查看更多 →

  • 深度学习:IoT场景下的AI应用与开发

    华为云计算 云知识 深度学习:IoT场景下的AI应用与开发 深度学习:IoT场景下的AI应用与开发 时间:2020-12-08 10:34:34 本课程旨基于自动售卖机这一真实场景开发,融合了物联网与AI两大技术方向,向您展示AI与IoT融合的场景运用并解构开发流程;从 物联网平台

    来自:百科

    查看更多 →

  • 计算机视觉基础:深度学习和神经网络

    、自动机器学习等领域。 课程简介 本教程介绍了AI解决方案深度学习的发展前景及其面临的巨大挑战;深度神经网络的基本单元组成和产生表达能力的方式及复杂的训练过程。 课程目标 通过本课程的学习,使学员: 1、了解深度学习。 2、了解深度神经网络。 课程大纲 第1章 深度学习和神经网络

    来自:百科

    查看更多 →

  • 计算加速型P2vs图形加速增强型弹性云服务器介绍

    GPU卡,每台云服务器支持最大8张Tesla V100显卡。 支持NVIDIA CUDA 并行计算,支持常见的深度学习框架TensorflowCaffePyTorchMXNet等。 单实例最大网络带宽30Gb/s。 完整的基础能力:网络自定义,自由划分子网、设置网络访问策略;海量

    来自:百科

    查看更多 →

  • ModelArts

    自研MoXing深度学习框架,提升算法开发效率和训练速度。 优化深度模型推理中GPU的利用率,加速云端在线推理。 可生成在Ascend芯片上运行的模型,实现高效端边推理。 灵活 支持多种主流开源框架(TensorFlow、Spark_MLlib、MXNetCaffePyTorch、XG

    来自:百科

    查看更多 →

  • 计算加速型P2v型GPU加速型弹性云服务器规格及功能介绍

    支持NVIDIA CUDA 并行计算,支持常见的深度学习框架TensorflowCaffePyTorchMXNet等。 单精度能力15.7 TFLOPS,双精度能力7.8 TFLOPS。 支持NVIDIA Tensor Core能力,深度学习混合精度运算能力达到125 TFLOPS。

    来自:百科

    查看更多 →

  • ModelArts有什么优势

    自研MoXing深度学习框架,提升算法开发效率和训练速度。 优化深度模型推理中GPU的利用率,加速云端在线推理。 可生成在Ascend芯片上运行的模型,实现高效端边推理。 灵活 支持多种主流开源框架(TensorFlowSpark_MLlibMXNetCaffePyTorch、XGBoost-Sklearn)。

    来自:百科

    查看更多 →

  • 什么是AI开发

    通常是一个或多个机器学习深度学习模型,模型可以应用到新的数据中,得到预测、评价等结果。 业界主流的AI引擎TensorFlow、Spark_MLlib、MXNetCaffePyTorch、XGBoost-Sklearn等,大量的开发者基于主流AI引擎,开发并训练其业务所需的模型。

    来自:百科

    查看更多 →

  • 计算加速型P1型弹性云服务器规格及功能介绍

    算能力,可以使用P1型云服务器。常用的软件支持列表如下: TensorflowCaffePyTorchMXNet深度学习框架 RedShift for Autodesk 3dsMax、V-Ray for 3ds Max Agisoft PhotoScan MapD 弹性云服务器

    来自:百科

    查看更多 →

  • 推理加速型Pi1 Pi2服务器规格及功能介绍

    GPU内置硬件视频编解码引擎,能够同时进行35路高清视频解码与实时推理 常规支持软件列表 Pi1实例主要用于GPU推理计算场景,例如图片识别、语音识别、 自然语言处理 等场景。 常用的软件支持列表如下: TensorflowCaffePyTorchMXNet深度学习框架 推理加速型Pi2

    来自:百科

    查看更多 →

  • 模型转换及其常见问题

    模型转换及其常见问题 模型转换及其常见问题 时间:2021-02-25 14:00:38 人工智能 培训学习 昇腾计算 模型转换,即将开源框架的网络模型(如CaffeTensorFlow等),通过ATC(Ascend Tensor Compiler)模型转换工具,将其转换成昇腾AI处

    来自:百科

    查看更多 →

  • 昇腾AI软件栈逻辑架及功能介绍

    封装,包含了框架管理器以及流程编排器。 对于昇腾AI处理器,L2执行框架提供了神经网络的离线生成和执行能力,可以脱离深度学习框架(如CaffeTensorFlow等)使得离线模型(Offline Model,OM)具有同样的能力(主要是推理能力)。框架管理器中包含了离线模型生成器(Offline

    来自:百科

    查看更多 →

  • 使用昇腾弹性云服务器实现黑白图像上色应用(C++)

    色应用开发,通过该实验了解将神经网络模型部署到昇腾310处理器运行的一般过程和方法。 基本要求: 1. 对业界主流的深度学习框架(CaffeTensorFlow等)有一定了解。 2. 具备一定的C++、Shell、Python脚本开发能力。 3. 了解Linux操作系统的基本使用。

    来自:百科

    查看更多 →

  • 计算加速型科学计算型P1基本功能及特点是什么

    功能,均可以通过web界面由用户自助进行操作。 支持VPC 支持通过VPC内的私有网络,与E CS 之间内网互通; 易用性 支持TensorFlowCaffe等流行框架 支持k8s/Swarm,使用户能够非常简便的搭建、管理计算集群。 未来支持主流框架镜像、集群自动化发放 存储 支

    来自:百科

    查看更多 →

  • 机器学习概览

    需要掌握人工智能技术,希望具备及其学习深度学习算法应用能力,希望掌握华为人工智能相关产品技术的工程师 课程目标 学完本课程后,您将能够:掌握学习算法定义与机器学习的流程;了解常用机器学习算法;了解超参数、梯度下降和交叉验证等概念。 课程大纲 1. 机器学习算法 2. 机器学习的分类 3. 机器学习的整体流程

    来自:百科

    查看更多 →

共105条
看了本文的人还看了