卷积神经网络 tensorflow 内容精选 换一换
  • 华为云云上先锋AI挑战赛

    神将教你从0到1通关 图像识别 !!帮你实现当下热门的垃圾分类、自动驾驶技术。 【赛事简介】 本次比赛为AI主题赛中的挑战赛。选手可以使用卷积神经网络对生活中的街道场景进行识别。选手可重复提交代码,直到代码完美为止。 【参赛对象】 对AI感兴趣且年满18岁的开发者均可报名参加。 【报名须知】

    来自:百科

    查看更多 →

  • 视频内容分析有什么功能

    取违规或者关键信息,包括踢、扔、抛物体等。 视频质量分析VQA 视频质量分析(Video Quality Analysis)是通过深度卷积神经网络算法识别视频画面质量,将视频画面的质量进行归类,从而过滤出清晰的高质量视频。 视频 OCR :视频OCR(Video Optical Character

    来自:百科

    查看更多 →

  • 卷积神经网络 tensorflow 相关内容
  • ModelArts AI Gallery_市场_资产集市

    CPU、GPU、Ascend 310 SSD_VGG Caffe 在线服务 GPU 暂不支持 EfficientDet Tensorflow 在线服务 GPU CPU、GPU YOLOv5 Pytorch 在线服务 GPU CPU、GPU BERT TensorFlow 在线服务 GPU CPU、GPU、Ascend

    来自:专题

    查看更多 →

  • 视频内容分析 VCR是什么

    基于对视频的前后帧信息、光流运动信息分析、场景内容信息识别等分析,检测和识别视频动作 优势 多模态识别 综合图像、光流、声音等信息,识别动作更准确 识别准确 采用3D卷积神经网络算法,动作识别准确度高 对复杂场景鲁棒性强 对不同天气条件、不同的摄像头角度等复杂场景的视频动作识别具有良好的鲁棒性 建议搭配使用: 对象存储服务 OBS

    来自:百科

    查看更多 →

  • 卷积神经网络 tensorflow 更多内容
  • 业界主流AI开发框架

    有哪些;了解Pytorch的特点;了解TensorFlow的特点;区别TensorFlow 1.X与2.X版本;掌握TensorFlow 2的基本语法与常用模块;掌握MNIST手写体数字识别实验的流程。 课程大纲 1. 深度学习开发框架简介 2. TensorFlow2基础 3.

    来自:百科

    查看更多 →

  • AI引擎

    华为云计算 云知识 AI引擎 AI引擎 时间:2020-12-24 14:36:32 AI引擎指ModelArts的开发环境、训练作业、模型推理(即模型管理和部署上线)支持的AI框架。主要包括业界主流的AI框架,TensorFlowMXNetCaffe、Spark_Mllib

    来自:百科

    查看更多 →

  • AI基础课程--常用框架工具

    Python机器学习库Scikit-learn 第6章 Python图像处理库Scikit-image 第7章 TensorFlow简介 第8章 Keras简介 第9章 pytorch简介 华为云 面向未来的智能世界,数字化是企业发展的必由之路。数字化成功的关键是以云原生的思维践行

    来自:百科

    查看更多 →

  • 张量加速引擎(TBE)的三种应用场景

    Engine)作为算子的兵工厂,为基于昇腾AI处理器运行的神经网络提供算子开发能力,用TBE语言编写的TBE算子来构建各种神经网络模型。同时,TBE对算子也提供了封装调用能力。在TBE中有一个优化过的神经网络TBE标准算子库,开发者可以直接利用标准算子库中的算子实现高性能的神经网络计算。除此之外,TBE也提供

    来自:百科

    查看更多 →

  • 基于ModelArts实现人脸识别

    本实验指导用户在华为云ModelArts平台对预置的模型进行重训练,快速构建 人脸识别 应用。 实验目标与基本要求 掌握MXNet AI引擎用法; 掌握基于MXNet构建人脸识别神经网络; 掌握华为云ModelArts SDK创建训练作业、模型部署和模型测试; 掌握ModelArts自研分布式训练框架MoXing。

    来自:百科

    查看更多 →

  • 张量加速引擎是什么?

    华为云计算 云知识 张量加速引擎是什么? 张量加速引擎是什么? 时间:2020-08-19 09:27:09 神经网络构造中,算子组成了不同应用功能的网络结构。而张量加速引擎(Tensor Boost Engine)作为算子的兵工厂,为基于昇腾AI处理器运行的神经网络提供算子开发能力,用

    来自:百科

    查看更多 →

  • 推理加速型Pi1 Pi2服务器规格及功能介绍

    GPU内置硬件视频编解码引擎,能够同时进行35路高清视频解码与实时推理 常规支持软件列表 Pi1实例主要用于GPU推理计算场景,例如图片识别、 语音识别 自然语言处理 等场景。 常用的软件支持列表如下: TensorflowCaffePyTorchMXNet等深度学习框架 推理加速型Pi2

    来自:百科

    查看更多 →

  • 深度学习概览

    课程目标 学完本课程后,您将能够:描述神经网络的定义与发展;熟悉深度学习神经网络的重要“部件”;熟悉神经网络的训练与优化;描述深度学习中常见的问题。 课程大纲 1. 深度学习简介 2. 训练法则 3. 激活函数 4. 正则化 5. 优化器 6. 神经网络类型 7. 常见问题 华为云 面

    来自:百科

    查看更多 →

  • 昇腾AI软件栈框架管理器功能框架介绍

    时间:2020-08-19 10:07:38 框架管理器协同TBE为神经网络生成可执行的离线模型。在神经网络执行之前,框架管理器与昇腾AI处理器紧密结合生成硬件匹配的高性能离线模型,并拉通了流程编排器和运行管理器使得离线模型和昇腾AI处理器进行深度融合。在神经网络执行时,框架管理器联合了流程编排器、运行管

    来自:百科

    查看更多 →

  • 大V讲堂——能耗高效的深度学习

    10:09:21 现在大多数的AI模型,尤其是计算视觉领域的AI模型,都是通过深度神经网络来进行构建的,从2015年开始,学术界已经开始注意到现有的神经网络模型都是需要较高算力和能好的。并且有大量的研究论文集中于如何将这些AI模型从云上部署到端侧,为AI模型创造更多的应用场景和产业价值。

    来自:百科

    查看更多 →

  • TBE基本概念之NPU

    Engine)提供了昇腾AI处理器自定义算子开发能力,通过TBE提供的API和自定义算子编程开发界面可以完成相应神经网络算子的开发。 TBE的重要概念之一为NPU,即Neural-network Processing Unit,神经网络处理器。 在维基百科中,NPU这个词条被直接指向了“人工智能加速器”,释义是这样的:

    来自:百科

    查看更多 →

  • 昇腾AI软件栈流程编排器(Matrix)功能介绍

    算引擎由开发者进行自定义来完成所需要的具体功能。 通过流程编排器的统一调用,整个深度神经网络应用一般包括四个引擎:数据引擎,预处理引擎,模型推理引擎以及后处理引擎。 1、数据引擎主要准备神经网络需要的数据集(如MNIST数据集)和进行相应数据的处理(如图片过滤等),作为后续计算引擎的数据来源。

    来自:百科

    查看更多 →

  • 计算加速型P2vs图形加速增强型弹性云服务器介绍

    GPU卡,每台云服务器支持最大8张Tesla V100显卡。 支持NVIDIA CUDA 并行计算,支持常见的深度学习框架TensorflowCaffePyTorchMXNet等。 单实例最大网络带宽30Gb/s。 完整的基础能力:网络自定义,自由划分子网、设置网络访问策略;海量存储,

    来自:百科

    查看更多 →

  • ModelArts分布式训练_分布式训练介绍_分布式调测

    ModelArts提供的调测代码是以Pytorch为例编写的,不同的AI框架之间,整体流程是完全相同的,只需要修改个别的参数即可。 不同类型分布式训练介绍 单机多卡数据并行-DataParallel(DP) 介绍基于Pytorch引擎的单机多卡数据并行分布式训练原理和代码改造点。MindSpore引擎的分布式训练参见MindSpore官网。

    来自:专题

    查看更多 →

  • ModelArts自定义镜像_自定义镜像简介_如何使用自定义镜像

    了解更多 从0到1制作自定义镜像并用于训练 Pytorch+CPU/GPU 介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎Pytorch,训练使用的资源是CPU或GPU。 Tensorflow+GPU 介绍如何从0到1制作镜像,并使用

    来自:专题

    查看更多 →

  • 计算加速型P2v型GPU加速型弹性云服务器规格及功能介绍

    GPU卡,每台云服务器支持最大8张Tesla V100显卡。 支持NVIDIA CUDA 并行计算,支持常见的深度学习框架TensorflowCaffePyTorchMXNet等。 单精度能力15.7 TFLOPS,双精度能力7.8 TFLOPS。 支持NVIDIA Tensor Co

    来自:百科

    查看更多 →

  • 数字视觉预处理6个模块功能及架构介绍

    -JPEGD模块对JPEG格式的图片进行解码,将原始输入的JPEG图片转换成YUV数据,对神经网络的推理输入数据进行预处理。 -JPEG图片处理完成后,需要用JPEGE编码模块对处理后的数据进行JPEG格式还原,用于神经网络的推理输出数据的后处理。 -当输入图片格式为PNG时,需要调用PNGD解码

    来自:百科

    查看更多 →

共105条
看了本文的人还看了