tensorflow神经网络 内容精选 换一换
  • 神经网络基础

    华为云计算 云知识 神经网络基础 神经网络基础 时间:2020-12-07 16:53:14 HCIP-AI EI Developer V2.0系列课程。神经网络是深度学习的重要基础,理解神经网络的基本原理、优化目标与实现方法是学习后面内容的关键,这也是本课程的重点所在。 目标学员

    来自:百科

    查看更多 →

  • 大V讲堂——神经网络结构搜索

    云知识 大V讲堂——神经网络结构搜索 大V讲堂——神经网络结构搜索 时间:2020-12-14 10:07:11 神经网络结构搜索是当前深度学习最热门的话题之一,已经成为了一大研究潮流。本课程将介绍神经网络结构搜索的理论基础、应用和发展现状。 课程简介 神经网络结构搜索(NAS)

    来自:百科

    查看更多 →

  • tensorflow神经网络 相关内容
  • 昇腾AI软件栈逻辑架及功能介绍

    L0计算资源层是昇腾AI处理器的硬件算力基础。在L1芯片使能层完成算子对应任务的分发后,具体计算任务的执行开始由L0计算资源层启动。L0计算资源层包含了操作系统、AI CPU、AI Core和DVPP专用硬件模块。 AI Core是昇腾AI处理器的算力核心,主要完成神经网络的矩阵相关计算。而AI

    来自:百科

    查看更多 →

  • 使用昇腾弹性云服务器实现黑白图像上色应用(C++)

    时间:2020-12-01 15:29:16 本实验主要介绍基于AI1型服务器的黑白图像上色项目,并部署在AI1型服务器上执行的方法。 实验目标与基本要求 本实验主要介绍基于AI1型 弹性云服务器 完成黑白图像上色应用开发,通过该实验了解将神经网络模型部署到昇腾310处理器运行的一般过程和方法。 基本要求:

    来自:百科

    查看更多 →

  • tensorflow神经网络 更多内容
  • 昇腾AI软件栈神经网络软件架构

    华为云计算 云知识 昇腾AI软件栈神经网络软件架构 昇腾AI软件栈神经网络软件架构 时间:2020-08-18 17:03:43 为完成一个神经网络应用的实现和执行,昇腾AI软件栈在深度学习框架到昇腾AI处理器之间架起了一座桥梁,为神经网络从原始模型,到中间计算图表征,再到独立执

    来自:百科

    查看更多 →

  • AI引擎

    华为云计算 云知识 AI引擎 AI引擎 时间:2020-12-24 14:36:32 AI引擎指ModelArts的开发环境、训练作业、模型推理(即模型管理和部署上线)支持的AI框架。主要包括业界主流的AI框架,TensorFlowMXNetCaffeSpark_Mllib、PyTo

    来自:百科

    查看更多 →

  • 基于深度学习算法的语音识别

    的原理与实战的同时,更好的了解人工智能的相关内容与应用。 实验目标与基本要求 通过本实验将了解如何使用Keras和Tensorflow构建DFCNN的 语音识别 神经网络,并且熟悉整个处理流程,包括数据预处理、模型训练、模型保存和模型预测等环节。 实验摘要 实验准备:登录华为云账号 1

    来自:百科

    查看更多 →

  • 计算机视觉基础:深度学习和神经网络

    课程简介 本教程介绍了AI解决方案深度学习的发展前景及其面临的巨大挑战;深度神经网络的基本单元组成和产生表达能力的方式及复杂的训练过程。 课程目标 通过本课程的学习,使学员: 1、了解深度学习。 2、了解深度神经网络。 课程大纲 第1章 深度学习和神经网络 华为云 面向未来的智能

    来自:百科

    查看更多 →

  • 实战篇:神经网络赋予机器识图的能力

    华为云计算 云知识 实战篇:神经网络赋予机器识图的能力 实战篇:神经网络赋予机器识图的能力 时间:2020-12-09 09:28:38 深度神经网络让机器拥有了视觉的能力,实战派带你探索深度学习! 课程简介 本课程主要内容包括:深度学习平台介绍、神经网络构建多分类模型、经典入门示例详解:构建手写数字识别模型。

    来自:百科

    查看更多 →

  • ModelArts AI Gallery_市场_资产集市

    AI Gallery AI Gallery AI Gallery算法、镜像、模型、Workflow等AI数字资产的共享,为高校科研机构、AI应用开发商、解决方案集成商、企业级/个人开发者等群体,提供安全、开放的共享及交易环节,加速AI资产的开发与落地,保障AI开发生态链上各参与方高效地实现各自的商业价值。

    来自:专题

    查看更多 →

  • 业界主流AI开发框架

    华为云计算 云知识 业界主流AI开发框架 业界主流AI开发框架 时间:2020-12-10 09:10:26 HCIA-AI V3.0系列课程。本课程将主要讲述为什么是深度学习框架、深度学习框架的优势并介绍二种深度学习 框架,包括PytorchTensorFlow。接下来会结合代码详细讲解TensorFlow

    来自:百科

    查看更多 →

  • AI基础课程--常用框架工具

    Python机器学习库Scikit-learn 第6章 Python图像处理库Scikit-image 第7章 TensorFlow简介 第8章 Keras简介 第9章 pytorch简介 华为云 面向未来的智能世界,数字化是企业发展的必由之路。数字化成功的关键是以云原生的思维践行

    来自:百科

    查看更多 →

  • 张量加速引擎(TBE)的三种应用场景

    1、一般情况下,通过深度学习框架中的标准算子实现的神经网络模型已经通过GPU或者其它类型神经网络芯片做过训练。如果将这个神经网络模型继续运行在昇腾AI处理器上时,希望尽量在不改变原始代码的前提下,在昇腾AI处理器上能发挥最大性能。因此TBE提供了一套完整的TBE算子加速库,库中的算子功能与神经网络中的常见标准算子

    来自:百科

    查看更多 →

  • AI技术领域课程--深度学习

    华为云计算 云知识 AI技术领域课程--深度学习 AI技术领域课程--深度学习 时间:2020-12-15 15:23:12 深度学习是一种以人工神经网络为架构,对数据进行表征学习的算法。目前,在图像、语音识别、 自然语言处理 、强化学习等许多技术领域中,深度学习获得了广泛的应用,并

    来自:百科

    查看更多 →

  • 推理加速型Pi1 Pi2服务器规格及功能介绍

    GPU内置硬件视频编解码引擎,能够同时进行35路高清视频解码与实时推理 常规支持软件列表 Pi1实例主要用于GPU推理计算场景,例如图片识别、语音识别、自然语言处理等场景。 常用的软件支持列表如下: TensorflowCaffePyTorchMXNet等深度学习框架 推理加速型Pi2

    来自:百科

    查看更多 →

  • ModelArts自定义镜像_自定义镜像简介_如何使用自定义镜像

    了解更多 从0到1制作自定义镜像并用于训练 Pytorch+CPU/GPU 介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎Pytorch,训练使用的资源是CPU或GPU。 Tensorflow+GPU 介绍如何从0到1制作镜像,并使用

    来自:专题

    查看更多 →

  • 张量加速引擎是什么?

    华为云计算 云知识 张量加速引擎是什么? 张量加速引擎是什么? 时间:2020-08-19 09:27:09 神经网络构造中,算子组成了不同应用功能的网络结构。而张量加速引擎(Tensor Boost Engine)作为算子的兵工厂,为基于昇腾AI处理器运行的神经网络提供算子开发能力,用

    来自:百科

    查看更多 →

  • 昇腾AI软件栈框架管理器功能框架介绍

    华为云计算 云知识 昇腾AI软件栈框架管理器功能框架介绍 昇腾AI软件栈框架管理器功能框架介绍 时间:2020-08-19 10:07:38 框架管理器协同TBE为神经网络生成可执行的离线模型。在神经网络执行之前,框架管理器与昇腾AI处理器紧密结合生成硬件匹配的高性能离线模型,并

    来自:百科

    查看更多 →

  • 计算加速型P2vs图形加速增强型弹性云服务器介绍

    GPU卡,每台云服务器支持最大8张Tesla V100显卡。 支持NVIDIA CUDA 并行计算,支持常见的深度学习框架TensorflowCaffePyTorchMXNet等。 单实例最大网络带宽30Gb/s。 完整的基础能力:网络自定义,自由划分子网、设置网络访问策略;海量存储,

    来自:百科

    查看更多 →

  • ModelArts分布式训练_分布式训练介绍_分布式调测

    ModelArts提供的调测代码是以Pytorch为例编写的,不同的AI框架之间,整体流程是完全相同的,只需要修改个别的参数即可。 不同类型分布式训练介绍 单机多卡数据并行-DataParallel(DP) 介绍基于Pytorch引擎的单机多卡数据并行分布式训练原理和代码改造点。MindSpore引擎的分布式训练参见MindSpore官网。

    来自:专题

    查看更多 →

  • 昇腾AI软件栈流程编排器(Matrix)功能介绍

    、输入图片预处理及输出图片数据的标识等。计算引擎由开发者进行自定义来完成所需要的具体功能。 通过流程编排器的统一调用,整个深度神经网络应用一般包括四个引擎:数据引擎,预处理引擎,模型推理引擎以及后处理引擎。 1、数据引擎主要准备神经网络需要的数据集(如MNIST数据集)和进行相应

    来自:百科

    查看更多 →

共105条
看了本文的人还看了