检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
否 -1 Int 控制要考虑的前几个tokens的数量的整数。设置为-1表示考虑所有tokens。 适当降低该值可以减少采样时间。 top_p 否 1.0 Float 控制要考虑的前几个tokens的累积概率的浮点数。必须在 (0, 1] 范围内。设置为1表示考虑所有tokens。
--seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径:
--seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径:
--seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 微调数据集预处理参数说明
--seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 微调数据集预处理参数说明
--seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径:
--seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径:
自定义名称。 URL 设置为从c.从“设置”页签的“Grafana数据源配置信...获取的HTTP URL信息。 Basic auth 建议开启。 Skip TLS Verify 建议开启。 User 设置为从c.从“设置”页签的“Grafana数据源配置信...获取的用户名信息。 Password
获取正则表达式。 设置自动化搜索参数 从已设置的“超参”中选择可用于搜索优化的超参。优化的超参仅支持float类型,选中自动化搜索参数后,需设置取值范围。 搜索算法配置 ModelArts内置三种超参搜索算法,用户可以根据实际情况选择对应的算法,支持多选。对应的算法和参数解析请参考以下:
此处会自动显示中转目录。 如果设置的是OBS路径,单击“提交作业”后,插件会自动将当前打开的项目文件整体上传至OBS中转目录上。 图6 设置中转目录 设置输入路径:本地项目对应的输入文件设置为输入路径。 图7 设置输入路径 在输入框选择输入数据所在的路径,如图9所示。 图8 填写训练输入路径
--seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 微调数据集预处理参数说明
Megatron-DeepSpeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU和深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。 Megatron-LM是
multi-step参数设置 启动推理服务时,使用multi-step调度需要配置的参数如下表所示。 表1 开启multi-step调度参数配置 服务启动方式 配置项 取值类型 配置说明 offline num_scheduler_steps int 连续运行模型的步数。 默认为1,推荐设置为8 offline
韧性特指安全韧性,即云服务受攻击后的韧性,不含可靠性、可用性。本章主要阐述ModelArts服务受入侵的检测响应能力、防抖动的能力、域名合理使用、内容安全检测等能力。 安全防护套件覆盖和使用堡垒机,增强入侵检测和防御能力 ModelArts服务部署主机层、应用层、网络层和数据层的安全防护套件。及时
收报告”,即可在弹出的“验收报告”对话框中查看详情。 图11 查看验收报告 删除标注任务 验收结束后,针对不再使用的标注任务,您可单击任务所在行的删除。任务删除后,未验收的标注详情将丢失,请谨慎操作。但是数据集中的原始数据以及完成验收的标注数据仍然存储在对应的OBS桶中。 父主题:
Gallery显示的资产名称。 “来源”选择“ModelArts”。 设置“ModelArts区域”。 设置可以使用该资产的ModelArts区域,以控制台实际可选值为准。 选择“AI应用名称”。 从ModelArts的AI应用管理中选择待发布的模型。支持将使用容器镜像导入的模型和其他训练产生的模型发布至AI
数值较低,输出结果更加集中和确定。 取值范围:0~2 默认值:1 核采样/top_p 设置推理核采样。调整输出文本的多样性,数值越大,生成文本的多样性就越高。 取值范围:0.1~1 默认值:1 top_k 选择在模型的输出结果中选择概率最高的前K个结果。 取值范围:1~1000 默认值:20 在对话框中输
启动文件 选择代码目录中训练作业的Python启动脚本。例如“obs://test-modelarts/code/main.py”。 超参 当资源规格为单机多卡时,需要指定超参world_size和rank。 当资源规格为多机时(即实例数大于 1),无需设置超参world_size和rank,超参会由平台自动注入。
成。 图4 查看我的模型状态 步骤2:部署模型服务 模型创建成功后,在我的模型列表,单击操作列的“部署”,进入部署模型服务页面。 在部署模型服务页面,完成创建配置。 图5 资源设置 表2 部署模型服务 参数 说明 取值样例 服务设置 服务名称 自定义模型服务的名称。 service-1122
在ModelArts管理控制台的左侧导航栏中,选择“工作空间”进入工作空间列表。 在工作空间列表,单击操作列的“配额管理”进入工作空间详情页。 在配额信息页面可以查看工作空间设置的配额值、已用的配额、最后修改时间等配额信息。 单击配额信息右侧的“修改配额”可以修改配额值。配置值的配置说明请参见表2。