检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
返回结果 状态码 请求发送以后,您会收到响应,包含状态码、响应消息头和消息体。 状态码是一组从1xx到5xx的数字代码,状态码表示了请求响应的状态,完整的状态码列表请参见状态码。 对于Pangu服务接口,如果调用后返回状态码为“200”,则表示请求成功。 响应消息头 对应请求消息
过拟合是指为了得到一致假设而使假设变得过度严格,会导致模型产生“以偏概全”的现象,导致模型泛化效果变差。 欠拟合 欠拟合是指模型拟合程度不高,数据距离拟合曲线较远,或指模型没有很好地捕捉到数据特征,不能够很好地拟合数据。 损失函数 损失函数(Loss Function)是用来度量
schema的形式进行描述,参数说明请参考官方指导。 metadata 是 Object metadata 扩展字段 。 表2 metadata参数说明 参数 是否必选 参数类型 描述 url 是 String assistant api调用地址。 authType 是 String 用于指定身份验证的类型,默
project_id 是 String 项目ID,获取方法请参见获取项目ID。 deployment_id 是 String 模型的部署ID,获取方法请参见获取模型调用API地址。 请求参数 表2 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String
长江中的鱼类种类繁多,是中国淡水渔业的重要基地之一。长江中的典型鱼类包括:1. **中华鲟**:这是一种生活在长江中上游的大型鱼类,以其巨大的体型和古老的种类而闻名。中华鲟是一种濒危物种,主要原因是过度捕捞和生境破坏。2. **长江白鲟**:长江白鲟是长江特有的大型淡水鱼类,与中华鲟相似,也是一种濒危物种。长江白鲟
和功能。 Cache缓存:是一种临时存储数据的方法,它可以提高数据的访问速度和效率。缓存可以根据不同的存储方式进行初始化、更新、查找和清理操作。缓存还可以支持语义匹配和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。 Vector向量存储:是一种将数据转换为数学表示的方
和功能。 Cache缓存:是一种临时存储数据的方法,它可以提高数据的访问速度和效率。缓存可以根据不同的存储方式进行初始化、更新、查找和清理操作。缓存还可以支持语义匹配和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。 Vector向量存储:是一种将数据转换为数学表示的方
sh脚本主要用于安装docker、hdad和k3s,请联系华为工程师获取。 pkg-path是步骤2中整合的安装包文件目录。 host-ip是设备在集群中的ip,一般为内网ip。 node-type是集群节点类型。其中,worker表示工作节点,controller表示主控节点。 在服
方法二:产品介绍可以来源于真实的产品信息,也可以通过in-context-learning方式生成。示例如下: 大模型输入: 你是一个广告策划,你的工作是为不同的产品写宣传文案。 以下是一些优秀的宣传文案样例,请参考这些样例,为产品:“%s”编写一段宣传文案。 宣传文案样例1: XXXXX
思考:您的数学成绩是55分。接下来,我将查询您的语文成绩。 行动:使用工具[query_score],传入参数{"arg": "语文"} 工具返回:你的语文的成绩是56分 - 步骤3 答复:您的语文成绩是56分。 最终结果: 您的数学成绩是55分,而语文成绩是56分。
盘古大模型是集数据管理、模型训练和模型部署于一体的一站式大模型开发与应用平台。平台支持大模型的定制开发,提供全生命周期工具链,帮助开发者高效构建与部署模型,企业可灵活选择适合的服务与产品,轻松实现模型与应用的开发。 公测 产品介绍 2 盘古大模型「应用百宝箱」上线 应用百宝箱是盘古大
请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String 用户Token,通过调用IAM服务获取用户Token接口获取(响应消息头中X-Subject-Token的值)。 Content-Type 是 String 发送的实体的MIME类型,参数值为“application/json”。
如果需要约束输出格式,可以在提示词里体现。请注意输出格式中的key不要有语义重复,并且需要与前文要求中的key名字保持一致,否则模型会不理解是同一个key。 恰当的表述 可以尝试从英语的逻辑去设计提示词。 最好是主谓宾结构完整的句子,少用缩写和特殊句式。 应使用常见的词汇和语言表达方式,避免使用生僻单词和复杂的句式,防止机器理解偏差。
llm_module_config.system_prompt = "你是华为开发的AI助手" # 盘古LLM pangu_llm = LLMs.of("pangu", llm_config) answer = pangu_llm.ask("你是谁") 父主题: Python SDK
这里提供了一些微调参数的建议值和说明,供您参考: 表1 微调参数的建议和说明 训练参数 范围 建议值 说明 训练轮数(epoch) 1~50 2/4/8/10 训练轮数是指需要完成全量训练数据集训练的次数。训练轮数越大,模型学习数据的迭代步数就越多,可以学得更深入,但过高会导致过拟合;训练轮数越小,模型学习数
它可以用来做文本生成、自动写作、代码补全等任务。 URI POST /v1/{project_id}/deployments/{deployment_id}/text/completions 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String
["广州市需要一份推广文案,请开始创作"], "target": "广州,xxx "} {"context": ["你是一名导游,现在请向我介绍下深圳这座城市"], "target": "深圳,xxx "} …… 若目标任务是相对明确的,则在微调数据中,每个任务的Prompt可以保持固定。注意,这里Prompt
#TXT格式,一行对应1条JSON #PDF、WORD、HTML只需上传对应的文档,文档内容为文本 #JSONL {"text":"《活着》,是中国著名作家余华所写的一部长篇小说。《活着》讲述了一个普通农民徐福贵的人生历程。他的人生充满了苦难和挫折,但他在面对这些困难时,始终保持着坚强和乐观的态度。"}
高质量的数据进行模型训练。 垂域知识问答场景:通用模型本身已经具有在给定的一段或几段段落知识的场景下进行总结回答的能力。因此,如果您的场景是基于某个领域内的知识问答,那么采用微调的手段确实能从一定程度上提升效果,但如果综合考虑训练的耗时和模型后续的持续迭代,采用搜索+问答的方案则更具性价比。
MeetingAgent() { final String customSystemPrompt = "你是一个会议室预定助手,今天的日期是" + new SimpleDateFormat("yyyy年MM月dd日").format(new Date());