检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
_13b.sh 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图2 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/
指令微调数据:如上述提供的 alpaca_gpt4_data.json 数据集,数据集包含有以下字段: instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为
指令微调数据:如上述提供的 alpaca_gpt4_data.json 数据集,数据集包含有以下字段: instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为
contigous()) 将版本回退至pytorch1.3。 必现的问题,使用本地Pycharm远程连接Notebook调试。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。
从OBS中导入模型文件创建模型时,模型文件包需符合ModelArts的模型包规范,推理代码和配置文件也需遵循ModelArts的要求。 本章节提供针对常用AI引擎的自定义脚本代码示例(包含推理代码示例)。模型推理代码编写的通用方法及说明请见模型推理代码编写说明。 Tensorflow
-max-num-seqs:最大同时处理的请求数,超过后在等待池等候处理。 --max-model-len:推理时最大输入+最大输出tokens数量,输入超过该数量会直接返回。max-model-len的值必须小于config.json文件中的"seq_length"的值,否则推理预测会报错。不
pd.read_csv(ff, **param) 必现的问题,使用本地Pycharm远程连接Notebook调试。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。
导入数据到ModelArts数据集 处理ModelArts数据集中的数据 标注ModelArts数据集中的数据 发布ModelArts数据集中的数据版本 分析ModelArts数据集中的数据特征 导出ModelArts数据集中的数据 入门案例:快速创建一个物体检测的数据集
Server在日常操作与维护过程中涉及的高危操作,需要严格按照操作指导进行,否则可能会影响业务的正常运行。 高危操作风险等级说明: 高:对于可能直接导致业务失败、数据丢失、系统不能维护、系统资源耗尽的高危操作。 中:对于可能导致安全风险及可靠性降低的高危操作。 低:高、中风险等级外的其他高危操作。 表1
能测试方法? 如何将Ubuntu20.04内核版本从低版本升级至5.4.0-144-generic? 如何禁止Ubuntu 20.04内核自动升级? 哪里可以了解Atlas800训练服务器硬件相关内容 使用GPU A系列裸金属服务器有哪些注意事项? GPU A系列裸金属服务器如何更换NVIDIA和CUDA?
本教程中用到的模型软件包如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-3rdLLM-905-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
减少线程数。 排查办法 根据错误信息判断,报错原因来源于用户代码。 您可以通过以下两种方式排查: 线上环境调试代码(仅适用于非分布式代码) 在开发环境(notebook)申请相同规格的开发环境实例。 在notebook调试用户代码,并找出问题的代码段。 通过关键代码段 + 退出码尝试去搜索引擎寻找解决办法。,
获取“repo_id”和待下载的文件名。 获取“repo_id” 在AI Gallery页面的资产详情页,单击复制完整的资产名称,如图1所示,获取到的信息即为“repo_id”。例如,复制出的信息为“ur5468675/test_cli_model1”,则该资产的“repo_id”为“u
__mul__.2在forward计算阶段的第一个input存在偏差。 追溯代码实现是下图中noise变量使用torch.rand_like ()作noise变量的初始化 (下图第730行)。由于torch.rand_like()该函数会根据输入的input构造同样size、dtype
可能为/home/ma-user/work磁盘空间不足。 解决方法 删除/home/ma-user/work路径下无用文件。 父主题: VS Code连接开发环境失败故障处理
在ModelArts控制台的AI应用模块中,将模型部署为一个AI应用。 登录ModelArts控制台,单击“资产管理 > AI应用 > 创建”,开始创建AI应用。 设置创建AI应用的相应参数。此处仅介绍关键参数,设置AI应用的详细参数解释请参见从OBS中选择元模型。 根据需要自定义应用的名称和版本。
使用CTS审计ModelArts服务 ModelArts支持云审计的关键操作 查看ModelArts相关审计日志
能异常。下表可帮助您定位异常出现的原因,风险操作包括但不限于以下内容。 高危操作风险等级说明: 高:对于可能直接导致业务失败、数据丢失、系统不能维护、系统资源耗尽的高危操作。 中:对于可能导致安全风险及可靠性降低的高危操作。 低:高、中风险等级外的其他高危操作。 表1 操作及其对应风险
使用ma-cli obs-copy命令复制OBS数据 使用ma-cli obs-copy [SRC] [DST]可以实现本地和OBS文件或文件夹的相互复制。 $ma-cli obs-copy -h Usage: ma-cli obs-copy [OPTIONS ] SRC DST
多模态(Multimodality)是集成和处理两种或两种以上不同类型的信息或数据的方法和技术。具体来说,在机器学习和人工智能领域,多模态涉及的数据类型通常包括但不限于文本、图像、视频、音频和传感器数据。 多模态的主要目标是利用来自多种模态的信息来提升任务的表现力,提供更丰富的用户体验,或是获取更全面的数据分析结果