检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
nsorBoard是TensorFlow的可视化工具包,提供机器学习实验所需的可视化功能和工具。 TensorBoard是一个可视化工具,能够有效地展示TensorFlow在运行过程中的计算图、各种指标随着时间的变化趋势以及训练中使用到的数据信息。TensorBoard相关概念请参考TensorBoard官网。
Step4 查看训练看板中的可视化数据 训练看板是MindInsight的可视化组件的重要组成部分,而训练看板的标签包含:标量可视化、参数分布图可视化、计算图可视化、数据图可视化、图像可视化和张量可视化等。 更多功能介绍请参见MindSpore官网资料:查看训练看板中可视的数据。 关闭MindInsight
自定义镜像的API接口功能,无误后将自定义镜像上传至SWR服务。 将自定义镜像创建为模型:将上传至SWR服务的镜像导入ModelArts的模型。 将模型部署为在线服务:将导入的模型部署上线。 本地构建镜像 以linux x86_x64架构的主机为例,您可以购买相同规格的ECS或者
container_name 容器名称。 project_id 用户所属的账号的project id。 user_id 提交作业的用户所属的账号的user id。 npu_id 昇腾卡的ID信息,比如davinci0(即将废弃)。 device_id 昇腾系列AI处理器的Physical ID。 device_type
略优化”的技巧来避免过大的策略更新,从而减少了训练过程中的不稳定性和样本复杂性。 指令监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。
作业运行中,没有用户日志情况下,在ModelArts控制台主页面单击训练详情页面后加载页面内容。 2.5秒 JupyterLab页面 进入JupyterLab页面后加载页面内容。 0.5秒 Notebook列表页 已有50个Notebook实例,在ModelArts控制台主页面单击开发环境后的时间。 4.5秒 镜像下
数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。 当前自动学习支持快速创建图像分类、物体检测、预测分析、声音分类和文本分类模型的定制化开发。可广泛应用在工业、零售安防等领域。
用团队公共搭建的CPU或GPU服务器,并且是多人共用,这带来一定的环境搭建和维护成本。因此使用本地IDE+远程Notebook结合的方式,可以同时享受IDE工程化开发和云上资源的即开即用,优势互补,满足开发者需求。 VS Code在Python项目开发中提供了优秀的代码编辑、调试
以满足不同场景下的用户需求。如您需要快速了解ModelArts服务不同计费模式的具体价格,请参见ModelArts价格详情。 包年/包月:一种预付费模式,即先付费再使用,按照订单的购买周期进行结算。购买周期越长,享受的折扣越大。一般适用于计算资源需求量长期稳定的成熟业务。 按需计
服务部署 自定义镜像模型部署为在线服务时出现异常 部署的在线服务状态为告警 服务启动失败 服务部署、启动、升级和修改时,拉取镜像失败如何处理? 服务部署、启动、升级和修改时,镜像不断重启如何处理? 服务部署、启动、升级和修改时,容器健康检查失败如何处理? 服务部署、启动、升级和修改时,资源不足如何处理?
Snt9B硬件,以基于DeepSpeed的Qwen-VL模型为例,为用户提供了多模态理解模型在ModelArts Standard上的全量微调和LoRA微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 本文档适用于OBS+SFS Turbo的数据存储方案,
908软件包中的AscendCloud-AIGC-6.3.908-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
log”文件将会被自动上传至ModelArts训练作业的日志目录(OBS)。如果本地相应目录没有生成大小>0的日志文件,则对应的父级目录也不会上传。因此,PyTorch NPU的plog日志是按worker存储的,而不是按rank id存储的(这是区别于MindSpore的)。目前,PyTorch
Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比,监督式微调能够充分利用预训练模型的知识和特征表示,从而加速训练过程并提高模型的性能。 训练阶段下有不同的训练策略,分为全参数训练、部
pore框架。这些子工具侧重不同的训练场景,可以定位模型训练中的精度问题。 支持精度预检,可扫描训练模型中的所有API进行API复现,给出精度情况的诊断和分析。 精度比对,对PyTorch整网API粒度的数据dump、精度比对,进而定位训练场景下的精度问题 支持溢出检测功能,判断
参数类型 说明 job_type 否 String 指定作业的类型,可选的有“train”和“inference”。查询自动学习资源规格无需此参数。 engine_id 否 Long 指定作业的引擎ID,默认为“0”。查询自动学习资源规格无需此参数。 project_type 否 Integer
Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看开发环境介绍。 本案例中,如果用户需要自定义开发,可通过Notebook环境进行数据预处理、权重转换等操作。并且Notebook环境具有一定的存储空间,可与OBS中的数据相互传递。 创建Notebook 创建开发环境
Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看开发环境介绍。 本案例中,如果用户需要自定义开发,可通过Notebook环境进行数据预处理、权重转换等操作。并且Notebook环境具有一定的存储空间,可与OBS中的数据相互传递。 创建Notebook 创建开发环境
Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看Notebook使用场景介绍。 本案例中,若用户需要自定义开发,可通过Notebook环境进行数据预处理、权重转换等操作。并且Notebook环境具有一定的存储空间,可与OBS中的数据相互传递。 创建Notebook 创建
Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看开发环境介绍。 本案例中,如果用户需要自定义开发,可通过Notebook环境进行数据预处理、权重转换等操作。并且Notebook环境具有一定的存储空间,可与OBS中的数据相互传递。 创建Notebook 创建开发环境