检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
设置最小授权范围。此处的“trainJob”为项目级云服务、“trainJobobs”为全局级云服务。了解更多 创建用户组并加入用户,步骤请参考Step1 创建用户组并加入用户。 给用户组授权策略。 在IAM服务的用户组列表页面,单击“授权”,进入到授权页面,为子账号配置权限。勾
第三方推理框架迁移到ModelArts Standard推理自定义引擎 ModelArts Standard推理服务支持VPC直连的高速访问通道配置 ModelArts Standard的WebSocket在线服务全流程开发 从0-1制作自定义镜像并创建模型 使用AppCode认证鉴权方式进行在线预测
--port表示服务部署的端口。每个全量/增量推理实例基于配置的端口号(--port)启动服务,并按照global rank_table中的全量实例、增量实例的顺序,对全量推理实例、增量推理实例启动的端口号进行排序,端口之间用`,`分隔开作为该环境变量的输入。当前端口9000是对
E表示作业的配置文件路径,如果不指定该参数,则表示配置文件为空。配置文件是一个YAML格式的文件,里面的参数就是命令的option参数。此外,如果用户在命令行中同时指定YAML_FILE配置文件和option参数,命令行中指定的option参数的值将会覆盖配置文件相同的值。 命令参数预览
是否必选 参数类型 说明 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 job_id 是 Long 训练作业的ID。 version_id 是 Long 训练作业的版本ID。 请求消息 无请求参数。 响应消息 相应参数如表2所示。 表2 响应参数
其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图3 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和性能。
部署边缘服务时,使用到IEF纳管的边缘节点,就需要用户给ModelArts的委托赋予Tenant Administrator权限,否则将无法成功部署边缘服务。具体可参见IEF的权限说明。 处理方法1 在ModelArts管理控制台,选择“权限管理”。 在用户名对应的“授权内容”列,单击“查
从而扩展其能力。 实时数据访问 由于大模型通常基于静态数据集训练,不具备实时信息。Function Calling允许模型访问最新的数据,提供更准确、更及时的回答。 提高准确性 在需要精确计算或特定领域知识时,大模型可以通过调用专门的函数来提高回答的准确性,例如调用数学计算函数、翻译服务或专业知识库。
S/MBS的值能够被NPU/(TP×PP×CP)的值进行整除。 Step4 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图3 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后
--port表示服务部署的端口。每个全量/增量推理实例基于配置的端口号(--port)启动服务,并按照global rank_table中的全量实例、增量实例的顺序,对全量推理实例、增量推理实例启动的端口号进行排序,端口之间用`,`分隔开作为该环境变量的输入。当前端口9000是对
获取“repo_id”和待上传的文件名。 获取“repo_id” 在AI Gallery页面的资产详情页,单击复制完整的资产名称,如图1所示,获取到的信息即为“repo_id”。例如,复制出的信息为“ur5468675/test_cli_model1”,则该资产的“repo_id”为“u
S应用实践中心,为具体的应用场景提供一整套解决方案。 应用中心介绍 “MaaS应用实践中心”提供基于行业客户应用场景的AI解决方案。MaaS提供的模型服务和华为云各AI应用层构建工具之间相互连通,通过灵活的组合方案,来帮助客户快速解决模型落地应用时所面临的业务及技术挑战。 Maa
pip软件包版本不匹配,需要修改为日志中打印的存在的版本。 图3 pip版本不匹配 构建日志中出现报错:“exec /usr/bin/sh: exec format error”。 这种报错一般是因为所用镜像系统引擎和构建镜像的系统引擎不一致引起的,例如使用的是x86的镜像却标记的是arm的系统架构。 可以
动态分档模型转换(可选) 如果迁移的模型有多个shape档位的需求,可以通过如下方式对模型进行分档转换。 动态分档是指将模型输入的某一维或者某几维设置为“动态”可变,但是需要提前设置可变维度的“档位”范围。即转换得到的模型能够在指定的动态轴上使用预设的几种shape(保证模型支持的shape),相
S/MBS的值能够被NPU/(TP×PP×CP)的值进行整除。 Step4 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图2 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后
S/MBS的值能够被NPU/(TP×PP×CP)的值进行整除。 Step4 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图2 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后
ModelArts统一镜像列表 统一镜像列表 ModelArts提供了ARM+Ascend规格的统一镜像,包括MindSpore、PyTorch。适用于开发环境,模型训练,服务部署,请参考统一镜像列表。 表1 MindSpore 预置镜像 适配芯片 适用范围 mindspore_2
信。由于需要转换较大内存的模型文件,因此大小要求200g及以上。 通过容器名称进入容器中。启动容器时默认用户为ma-user用户。 docker exec -it ${container_name} bash 上传代码和数据到宿主机时使用的是root用户,此处需要执行如下命令统一文件属主为ma-user用户。
工具内部对于随机的控制,是通过设定统一的随机种子进行随机性固定的。但是由于硬件的差异,会导致同样的随机种子在不同硬件上生成的随机数不同。具体示例如下: 由上图可见,torch.randn在GPU和NPU上固定随机种子后,仍然生成不同的随机张量。 对于上述场景,用户需要将网络中的randn
信。由于需要转换较大内存的模型文件,因此大小要求200g及以上。 通过容器名称进入容器中。启动容器时默认用户为ma-user用户。 docker exec -it ${container_name} bash 上传代码和数据到宿主机时使用的是root用户,此处需要执行如下命令统一文件属主为ma-user用户。