检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来
准备权重 获取对应模型的权重文件,获取链接参考表1。 在创建OBS桶创建的桶下创建文件夹用以存放权重和词表文件,例如在桶standard-llama2-13b中创建文件夹llama2-13B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来
本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来
LLama-Factory ShareGPT 指令微调数据:ShareGPT 格式来源于通过记录 ChatGPT 与用户对话的数据集,主要用于对话系统的训练。它更侧重于多轮对话数据的收集和组织,模拟用户与 AI 之间的交互。数据集包含有以下字段: conversations:包含一系列对话对象,每个
LLama-Factory ShareGPT 指令微调数据:ShareGPT 格式来源于通过记录 ChatGPT 与用户对话的数据集,主要用于对话系统的训练。它更侧重于多轮对话数据的收集和组织,模拟用户与 AI 之间的交互。数据集包含有以下字段: conversations:包含一系列对话对象,每个
0:打标者 1:审核者 2:团队管理者 3:数据集拥有者 status Integer 标注成员的当前登录状态。可选值如下: 0:未发送邀请邮件 1:已发送邀请邮件但未登录 2:已登录 3:标注成员已删除 update_time Long 更新时间。 worker_id String
请求参数 表3 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String 用户Token。通过调用IAM服务获取用户Token接口获取(响应消息头中X-Subject-Token的值)。 响应参数 状态码: 200 表4 响应Body参数
--tokenizer-model : tokenizer路径。 Megatron转HuggingFace参数说明 如果用户需要自动转换,则在训练作业中,添加变量CONVERT_MG2HF并赋值True。如果用户后续不需要自动转换,则在环境变量中必须删除CONVERT_MG2HF变量。 Megatron转
--tokenizer-model : tokenizer路径。 Megatron转HuggingFace参数说明 若用户需要自动转换,则在训练作业中,添加变量CONVERT_MG2HF并赋值True。若用户后续不需要自动转换,则在环境变量中必须删除CONVERT_MG2HF变量。 Megatron转HuggingFace脚本具体参数如下:
--tokenizer-model : tokenizer路径。 Megatron转HuggingFace参数说明 如果用户需要自动转换,则在训练作业中,添加变量CONVERT_MG2HF并赋值True。如果用户后续不需要自动转换,则在环境变量中必须删除CONVERT_MG2HF变量。 Megatron转
--tokenizer-model : tokenizer路径。 Megatron转HuggingFace参数说明 如果用户需要自动转换,则在训练作业中,添加变量CONVERT_MG2HF并赋值True。如果用户后续不需要自动转换,则在环境变量中必须删除CONVERT_MG2HF变量。 Megatron转
式为“/local_path/.../model_file_parent_dir/”。 environment 否 Environment实例 描述模型正常运行需要的环境,如使用的python版本、tensorflow版本等。请参见表2 source_job_id 否 String
/scripts/llama2/0_pl_lora_13b.sh 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图2 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径
单个GPU上实现大规模模型并行训练,从而提高训练速度。DeepSpeed提供了一系列的优化技术,如ZeRO内存优化、分布式训练等,可以帮助用户更好地利用多个GPU进行训练 Accelerate是一种深度学习加速框架,主要针对分布式训练场景。Accelerate的核心思想是通过模型
请求参数 表2 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String 用户Token。 通过调用IAM服务获取用户Token接口获取(响应消息头中X-Subject-Token的值)。 响应参数 状态码: 200 表3 响应Body参数
/scripts/llama2/0_pl_pretrain_13b.sh 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图2 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径
# 训练需要的启动脚本 # 以下目录结构,用户自己创建 |── training_data #原始数据目录,需要用户手动创建并上传,后续操作步骤中会提示 |── tr
训练完成的权重文件默认不会自动转换为Hugging Face格式权重。如果用户需要自动转换,则在运行脚本,例如0_pl_pretrain_13b.sh中,添加变量CONVERT_MG2HF并赋值TRUE。如果用户后续不需要自动转换,则在运行脚本中必须删除CONVERT_MG2HF变量。
训练完成的权重文件默认不会自动转换为Hugging Face格式权重。若用户需要自动转换,则在运行脚本,例如0_pl_pretrain_13b.sh中,添加变量CONVERT_MG2HF并赋值TRUE。若用户后续不需要自动转换,则在运行脚本中必须删除CONVERT_MG2HF变量。