检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
各个评测指标的通过/未通过/无效的结果展示。 仿真过程中关键数据的时间序列曲线图展示。 另外,对于用户自研的评测算法的评测结果,也可以按照eva.proto,序列化成pb文件保存起来,这样Octopus的仿真平台前端能够展示用户自研评测算法的评测结果。 eva.proto的关键字段解释 在利用Octop
静态场景(地图) 静态场景组成 领域模型设计 静态场景样例 附录 父主题: Open SCENARIO2.0场景说明
Octopus平台接收到原始数据(Rosbag包)后,将对数据进行解包、轨迹和接管分析等操作,用于数据总览、数据场景、数据回放、标注服务等模块,请用户结合实际需求,准备好相应模块所需数据。 Octopus平台转换后的OpenData数据服务模块所需数据请见下表: 表2 数据和模块对应关系
#其他(可选) 启动文件。 模型推理脚本,用户接收数据集路径和推理结果存放路径,按照一定要求将每张图片的推理结果存入对应路径json文件中。 自定义库。 允许用户使用自定义库,但不推荐使用需要编译的库,以避免与内置库文件冲突。示例中使用Pyt
示例代码 作业输入输出规范示例代码如下图所示: 代码文件命名为ros_hard_mining.py。 父主题: 场景挖掘作业(数据标记)
构建镜像 Octopus平台依赖算子镜像内的/bin/bash、stdbuf、tee软件,请确保基础镜像内包含上述软件且能通过PATH找到。 Dockerfile示例 FROM ros:noetic COPY ros_to_dataset.py /home/main/ # 算法启动示例:
逆行(Reverse Direction Driving)检测 逆行检测的目的是判断主车行驶过程中是否按车道规定的方向行驶。 根据OPNENDRIVE中对车道的lane id的定义, 沿着道路的reference line的前进方向, reference line右侧的lane id由0逐渐递减,左侧的lane
到达终点(Reach Destination)检测 到达终点检测的目的是判定主车是否到达场景文件中指定的全局路径规划的终点。 当主车的车辆坐标系原点进入终点为半径R(本设计取R为2m)范围内时, 则判定主车到达了终点。 在没有设置终点时, proto协议会把目标点默认初始化(0,0
C类均匀权重评分(Average)方案 当用户选择该评分方案时,就不需要设置评测指标的重要度,各个指标按均匀权重进行扣分。 C类均匀权重评分原则(Principle) 各指标得分权重相同。 C类均匀权重评测分数计算实现(Equation) 此方案下总分为100分,在计算得分时不考
附录(Appendix) Scalar Units Enum Lists Struct ALKS样例 父主题: 动态场景
急刹(Emergency Braking)检测 自动驾驶车辆急刹有两个典型阈值:ACC(Adaptive Cruise Control)的最大减速度,和AEB(Autonomous Emergency Braking)的最大减速度。 急刹检测的目的是判断主车在行驶过程中是否达到ACC和AEB的最大减速度。
乘员舒适性(Driving Comfort)检测 乘员舒适性检测关注的是自动驾驶车辆行驶过程中,驾驶员感受到的舒适程度。 舒适程度通常可以利用整个行驶过程中的速度方差来进行客观反映,而变异系数是可以对不同速度区间舒适程度进行比较。 变异系数的公式如下所示。 表示变异系数,表示标准差,表示均值。
通行速率(Efficiency)检测 通行速率用于评价主车在场景中从起点到终点的效率,主车越快到达终点,则通行速率越高。 本设计取通行速率的默认阈值为0m/s,即如果主车平均速度小于等于0,则该指标不通过。 通行速率指标可有效避免主车一直不动,其他评测指标均通过,导致得分却很高的情况发生。
AB类均匀权重(Average)评分方案 该方案同样分为AB两类指标,其中A类总分为60分,B类总分为40分,A类指标按均匀权重扣分,B类指标同样按均匀权重扣分。 AB类均匀权重评分原则(Principle) A类60分,各A类指标得分权重相同。 B类40分,各B类指标得分权重相同。
示例代码 以下为主程序文件ros2opendata.py中截取的代码片段,分别运行不同的功能,详见注释。 运行前准备: 解析点云消息: 解析gnss消息: 写opendata_to_platform.yaml文件: 父主题: Rosbag转OpenData作业(数据回放)
3D2D融合预标注 自动驾驶传感器中,各个模态有各自的优势和劣势。比如相机模态对visual appearance的感知更为准确,激光雷达模态对距离感知更为有效。然后当LiDAR扫描线数过低时,经常无法甄别物体的类型,但是此时如果能结合LiDAR扫描和2D图像检测,则可以由3D扫
构建镜像 Octopus平台依赖算子镜像内的/bin/bash、stdbuf、tee软件,请确保基础镜像内包含上述软件且能通过PATH找到。 Dockerfile示例 启动命令: python3 /home/main/ros2opendata.py --lidar_calibration_id
跟车起停检测的目的是判断主车跟随前车停车后能否在前车启动后重新启动。 当主车跟随前车制动停止后, 前车重新启动后, 主车重新启动的时间要合适, 该时间允许用户自定义, 本设计默认取3s。 当重新启动时间大于指定阈值时, 则跟车起停检测不通过。 该指标关联的内置可视化时间序列数据为:暂无。 该指标
Condition (1+) └─ Action 场景组成说明 场景文件的主体是一个场景剧本storyboard,用户需要在storyboard前先声明将会使用的路网RoadNetwork、参数Parameter,和实体Entities。然后在Storyb
附录 Enum Lists 父主题: 静态场景(地图)