检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
--save-model-type:输出后权重格式。 --load-dir:训练完成后保存的权重路径。 --save-dir:需要填入原始HF模型路径,新权重会存于../Llama2-13B/mg2hg下。 --target-tensor-parallel-size:任务不同调整参数targe
单击“下一步”,再单击“提交”,开始部署服务,待服务状态显示“正常”服务部署完成。 图7 服务部署完成 Step4 调用在线服务 进入在线服务详情页面,选择“预测”。 如果以vllm接口启动服务,设置请求路径:“/generate”,输入预测代码“{"prompt": "你好", "temperature":0
2:验收中。owner发起验收任务,但并未完成验收,此时不允许发起新的验收任务,只能继续完成当前验收任务。 3:通过。团队标注任务已完成。 4:驳回。manager再次启动任务,重新修改标注和审核工作。 5:验收结果同步中。验收任务改为异步,新增验收结果同步中的状态,此时不允许发起新的验收任务,也不允许继续当前验收,任务名称的地方提示用户同步中。
install.sh modellink; sh ./scripts_modellink/dev_pipeline.sh 使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendFactory;
单击“下一步”,再单击“提交”,开始部署服务,待服务状态显示“正常”服务部署完成。 图7 服务部署完成 Step4 调用在线服务 进入在线服务详情页面,选择“预测”。 如果以vllm接口启动服务,设置请求路径:“/generate”,输入预测代码“{"prompt": "你好", "temperature":0
04_to_modelarts/Dockerfile”为Dockerfile文件所在路径,“notebook_test/my_image:0.0.1”为构建的新镜像的SWR路径。 使用ma-cli image df命令在ModelArts Notebook中查询镜像构建缓存 使用ma-cli image
2:验收中。owner发起验收任务,但并未完成验收,此时不允许发起新的验收任务,只能继续完成当前验收任务。 3:通过。团队标注任务已完成。 4:驳回。manager再次启动任务,重新修改标注和审核工作。 5:验收结果同步中。验收任务改为异步,新增验收结果同步中的状态,此时不允许发起新的验收任务,也不允许继续当前验收,任务名称的地方提示用户同步中。
--save-model-type:输出后权重格式。 --load-dir:训练完成后保存的权重路径。 --save-dir:需要填入原始HF模型路径,新权重会存于../Llama2-13B/mg2hg下。 --target-tensor-parallel-size:任务不同调整参数targe
--save-model-type:输出后权重格式。 --load-dir:训练完成后保存的权重路径。 --save-dir:需要填入原始HF模型路径,新权重会存于../Llama2-13B/mg2hg下。 --target-tensor-parallel-size:任务不同调整参数targe
用于指定微调策略类型,可选择值full、lora。 如果设置为full,则对整个模型进行微调。这意味着在微调过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。 lora_target all 采取lora策略方法的目标模块,默认为all dataset 指令监督微调/ppo:alpaca_en_demo
--save-model-type:输出后权重格式。 --load-dir:训练完成后保存的权重路径。 --save-dir:需要填入原始HF模型路径,新权重会存于../Llama2-13B/mg2hg下。 --target-tensor-parallel-size:任务不同调整参数targe
--save-model-type:输出后权重格式。 --load-dir:训练完成后保存的权重路径。 --save-dir:需要填入原始HF模型路径,新权重会存于../Llama2-13B/mg2hg下。 --target-tensor-parallel-size:任务不同调整参数targe
--save-model-type:输出后权重格式。 --load-dir:训练完成后保存的权重路径。 --save-dir:需要填入原始HF模型路径,新权重会存于../Llama2-13B/mg2hg下。 --target-tensor-parallel-size:任务不同调整参数targe
--save-model-type:输出后权重格式。 --load-dir:训练完成后保存的权重路径。 --save-dir:需要填入原始HF模型路径,新权重会存于../Llama2-13B/mg2hg下。 --target-tensor-parallel-size:任务不同调整参数targe
训练任务得到的输出上传到4指定的obs_path中,日志上传到这一步log_url指定的位置中。 在这一步中需要注意的一个问题: 如果用户在自己的训练脚本中要创建新的目录或文件,请在以下几种目录中创建: /home/ma-user/work; /cache; inputs或者outputs中指定的loc
用于指定微调策略类型,可选择值full、lora。 如果设置为full,则对整个模型进行微调。这意味着在微调过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。 lora_target all 采取lora策略方法的目标模块,默认为all dataset 指令监督微调/ppo:alpaca_en_demo
用于指定微调策略类型,可选择值full、lora。 如果设置为full,则对整个模型进行微调。这意味着在微调过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。 lora_target all 采取lora策略方法的目标模块,默认为all dataset 指令监督微调/ppo:alpaca_en_demo
--save-model-type:输出后权重格式。 --load-dir:训练完成后保存的权重路径。 --save-dir:需要填入原始HF模型路径,新权重会存于../Llama2-13B/mg2hg下。 --target-tensor-parallel-size:任务不同调整参数targe
--save-model-type:输出后权重格式。 --load-dir:训练完成后保存的权重路径。 --save-dir:需要填入原始HF模型路径,新权重会存于../Llama2-13B/mg2hg下。 --target-tensor-parallel-size:任务不同调整参数targe
--save-model-type:输出后权重格式。 --load-dir:训练完成后保存的权重路径。 --save-dir:需要填入原始HF模型路径,新权重会存于../Llama2-13B/mg2hg下。 --target-tensor-parallel-size:任务不同调整参数targe