检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在线服务和边缘服务有什么区别? 在线服务 将模型部署为一个Web服务,您可以通过管理控制台或者API接口访问在线服务。 边缘服务 云端服务是集中化的离终端设备较远,对于实时性要求高的计算需求,把计算放在云上会引起网络延时变长、网络拥塞、服务质量下降等问题。而终端设备通常计算能力不
部署服务时,ModelArts报错“ModelArts.3520: 在线服务总数超限,限制为20”,接口返回“A maximum of xxx real-time services are allowed.”,表示服务数量超限。 正常情况下,单个用户最多可创建20个在线服务。可采取以下方式处理: 删除状态为“异常”的服务。
已存在部署完成的服务。 已完成模型调整,创建AI应用新版本。 操作步骤 登录ModelArts管理控制台,在左侧导航栏中选择“部署上线 > 在线服务”,默认进入“在线服务”列表。 在部署完成的目标服务中,单击操作列的“修改”,进入“修改服务”页面。 在选择模型及配置中,单击“增加模型版本进行灰度发布”添加新版本。
Files按钮,打开文件上传窗口,选择左侧的进入远端文件上传界面。 图1 上传文件图标 图2 进入远端文件上传界面 输入有效的远端文件URL后,系统会自动识别上传文件名称,单击“上传”,开始上传文件。 图3 输入有效的远端文件URL 图4 远端文件上传成功 异常处理 远端文件上传失败。可能是网络
时序预测-time_series_v2算法部署在线服务预测报错 问题现象 在线服务预测报错:ERROR: data is shorter than windows。 原因分析 该报错说明预测使用的数据行数小于window超参值。 在使用订阅算法时序预测-time_series_v
否,执行2。 检查存储图片数据的OBS路径。是否满足如下要求: 此OBS目录下未存放其他文件夹。 文件名称中无特殊字符,如~`@#$%^&*{}[]:;+=<>/ 如果OBS路径符合要求,请您按照服务具体情况执行3。 自动学习项目不同导致的失败原因可能不同。 图像识别训练失败请检查是否存在损坏图片,如有请进行替换或删除。
面提示调用接口访问在线服务。 目前只支持jpg、jpeg、bmp、png格式的图片。 图2 预测结果 表1 预测结果中的参数说明 参数 说明 predicted_label 表示图片预测的标签。 scores 表示Top5标签的预测置信度。 由于“运行中”的在线服务将持续耗费资源
sh,并预测模型。基础镜像中默认提供了run.sh作为启动脚本。 图9 运行启动脚本 上传一张预测图片(手写数字图片)到Notebook中。 图10 手写数字图片 图11 上传预测图片 重新打开一个新的Terminal终端,执行如下命令进行预测。 curl -kv -F 'imag
可以两个账号同时进行一个数据集的标注吗? 可以多人同时标注,但多人同时对同一张图片标注的话,只会以最后一个保存的人的标注结果为最终标注结果。建议轮流标注并及时保存标注结果。 父主题: Standard数据管理
通过JupyterLab在线使用Notebook实例进行AI开发 使用JupyterLab在线开发和调试代码 JupyterLab常用功能介绍 在JupyterLab使用Git克隆代码仓 在JupyterLab中创建定时任务 上传文件至JupyterLab 下载JupyterLab文件到本地
String 文件名称。 source Object 数据源信息,详细请见表3。 width Long 图片长度。 height Long 图片高度。 depth Long 图片深度。 segmented String 分割。 mask_source String 图像分割得到的m
运行完成的工作流会自动部署为相应的在线服务,您只需要在相应的服务详情页面进行预测即可。 在服务部署节点单击“实例详情”直接跳转进入在线服务详情页,或者在ModelArts管理控制台,选择“模型部署 > 在线服务”,单击生成的在线服务名称,即可进入在线服务详情页。 在服务详情页,选择“预测”页签。
使用订阅算法训练结束后没有显示模型评估结果 问题现象 AI Gallery中的YOLOv5算法,训练结束后没有显示模型评估结果。 原因分析 未标注的图片过多,导致没有模型评估结果。 处理方法 对所有训练数据进行标注。 父主题: 预置算法运行故障
类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F1值是模型
选择本地图片进行测试。 单击“预测”进行测试,预测完成后,右侧“预测结果”区域输出结果。如模型准确率不满足预期,可在“数据标注”页签中添加图片并进行标注,重新进行模型训练及模型部署。预测结果中的参数说明请参见表1。如果您对模型预测结果满意,可根据界面提示调用接口访问在线服务。 目
ketName/data-cat”。 如需要提前上传待标注的图片,请创建一个空文件夹,然后将图片文件保存在该文件夹下,图片的目录结构如:“/bucketName/data-cat/cat.jpg”。 如您将已标注好的图片上传至OBS桶,请按照如下规范上传。 图像分类数据集要求将标
区域选择“Resource Monitor”,展示“CPU使用率”和“内存使用率”。 图22 资源监控 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
Standard资源池节点故障定位 节点故障定位 对于Standard资源池,ModelArts平台在识别到节点故障后,通过给K8S节点增加污点的方式(taint)将节点隔离避免新作业调度到该节点而受到影响,并且使本次作业不受污点影响。当前可识别的故障类型如下,可通过隔离码及对应检测方法定位故障。 表1 隔离码 隔离码
tB4进行训练报错:TypeError: unhashable type: ‘list’。 原因分析 可能由于使用了多标签分类导致(即一个图片用了1个以上的标签)。 处理方法 使用单标签分类的数据集进行训练。 父主题: 数据集问题导致训练失败
使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错 问题现象 使用AI市场物体检测YOLOv3_Darknet53算法进行训练,将数据集切分后进行部署在线服务报错,日志如下:TypeError: Cannot interpret feed_dict key