检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
--backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host ${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口8080。 --tokenizer:tokeniz
ModelArts提供了丰富的关于Server使用NPU进行训练推理的案例指导,涵盖了LLM大语言模型、AIGC文生图、数字人等主流应用场景。您可单击链接,即可跳转至相应文档查看详细指导。 LLM大语言模型 主流开源大模型基于Server适配PyTorch NPU推理指导 主流开源大模型基于Server适配ModelLink
用户使用ma-cli制作自定义镜像失败,报错文件不存在(not found) 问题现象 用户使用ma-cli制作自定义镜像失败,报错文件目录不存在。 图1 报错xxx not found 原因分析 复制的文件需要放在Dockerfile同级文件夹或者子目录中,不能放在Dockerfile上层目录。
代码和参数进行过修改。 检查资源分配情况(cpu/mem/gpu/snt9/infiniband)是否符合预期。 通过CloudShell登录到Linux工作页面,检查GPU工作情况: 通过输入“nvidia-smi”命令,查看GPU工作是否异常。 通过输入“nvidia-smi
pip常用命令如下: pip --help#获取帮助 pip install SomePackage==XXXX #指定版本安装 pip install SomePackage #最新版本安装 pip uninstall SomePackage #卸载软件版本 其他命令请使用pip --help命令查询。
在ModelArts的Notebook中如何查看GPU使用情况? 创建Notebook时,当您选择的类型为GPU时,查看GPU使用情况具体操作如下: 登录ModelArts管理控制台,选择“开发空间>Notebook”。 在Notebook列表中,单击目标Notebook“操作”列的“打开”,进入“Jupyter”开发页面。
odelArts基础镜像,可先尝试直接使用工具命令,如果相关命令不存在则需要参考工具安装指导自行安装。 表1 ModelArts昇腾迁移调优工具总览表 使用场景 类别 工具名称 工具描述 工具安装 使用指导 PyTorch GPU训练迁移至PyTorch NPU训练 训练迁移 Transfer2NPU
创建项目时,如何快速创建OBS桶及文件夹? 在创建项目时需要选择训练数据路径,本章节将指导您如何在选择训练数据路径时,快速创建OBS桶和OBS文件夹。 在创建自动学习项目页面,单击数据集输入位置右侧的“”按钮,进入“数据集输入位置”对话框。 单击“新建对象存储服务(OBS)桶”,
mox.file与本地接口的对应关系和切换 API对应关系 Python:指本地使用Python对本地文件的操作接口。支持一键切换为对应的MoXing文件操作接口(mox.file)。 mox.file:指MoXing框架中用于文件操作的接口,其与python接口一一对应关系。 tf
ity+group_users字段进行设置,后续需要对指定资产进行用户白名单添加或删除操作时,可执行如下命令: from modelarts import workflow as wf # 添加指定的白名单用户列表 wf.add_whitelist_users(content_id="**"
大序列说明 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大m
大序列说明 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大m
各模型支持的最小卡数和最大序列 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大m
AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、在容器中使用ma-user用户运行以下命令下载并安装AutoAWQ源码。 cd llm_tools/AutoAWQ bash build.sh 2、运行“examples/quantize
x.zip的llm_tools/AutoAWQ目录下。 1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 conda create --name awq --clone PyTorch-2
+AWQ 方式二:使用AutoAWQ量化工具进行量化。 1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 conda create --name awq --clone PyTorch-2
大序列说明 基于vLLM(v0.6.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大m
大序列说明 基于vLLM(v0.5.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大m
大序列说明 基于vLLM(v0.5.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大m
大序列说明 基于vLLM(v0.5.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大m