检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在AscendCloud-AIGC代码包的multimodal_algorithm目录下集成了多个多模态模型的适配脚本脚本,用户可通过不同模型中的xxx_install.sh脚本一键适配。在用户通过Dockerfile构建模型的环境镜像时会执行该脚本,这会从github上拉取模型的官方源码,并通过git
专属集群ID,默认为空,不使用专属集群;使用专属集群部署服务时需确保集群状态正常;配置此参数后,则使用集群的网络配置,vpc_id参数不生效。 inf_config_list 否 Array of InfConfig objects 运行推理任务需要的配置列表,可选填,默认为空。 inf_output
指定算法所属的ai项目,默认值为"default-ai-project"。ai项目已下线,无需关注。 user_name String 用户名称。 domain_id String 用户的domainID。 source String 算法来源类型。 api_version String 算法api版本,标识新旧版。
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: GPU相关问题
Long 训练作业创建时间戳,单位为毫秒,创建成功后由ModelArts生成返回,无需填写。 user_name String 训练作业创建用户的用户名,创建成功后由ModelArts生成返回,无需填写。 annotations Map<String,String> 训练作业申明模板,
指定算法所属的ai项目,默认值为"default-ai-project"。ai项目已下线,无需关注。 user_name String 用户名称。 domain_id String 用户的domainID。 source String 算法来源类型。 api_version String 算法api版本,标识新旧版。
指定算法所属的ai项目,默认值为"default-ai-project"。ai项目已下线,无需关注。 user_name String 用户名称。 domain_id String 用户的domainID。 source String 算法来源类型。 api_version String 算法api版本,标识新旧版。
分组条件键对应值。 表3 get_job_list返回参数说明 参数 参数类型 描述 total Integer 查询到当前用户名下的所有作业总数。 count Integer 查询到当前用户名下的所有符合查询条件的作业总数。 limit Integer 查询作业的限制量。最小为1,最大为50。 offset
使用Workflow实现低代码AI开发 什么是Workflow 运行第一条Workflow 管理Workflow 开发第一条Workflow 开发Workflow命令参考
Long 训练作业创建时间戳,单位为毫秒,创建成功后由ModelArts生成返回,无需填写。 user_name String 训练作业创建用户的用户名,创建成功后由ModelArts生成返回,无需填写。 annotations Map<String,String> 训练作业申明模板,
如何将Keras的.h5格式模型导入到ModelArts中 ModelArts不支持直接导入“.h5”格式的模型。您可以先将Keras的“.h5”格式转换为TensorFlow的格式,然后再导入ModelArts中。 从Keras转TensorFlow操作指导请参见其官网指导。 父主题:
订阅使用 查找和收藏资产 订阅免费算法 订阅免费模型 下载数据 使用Notebook代码样例 使用镜像 使用AI案例 订阅Workflow 父主题: AI Gallery(旧版)
发布分享 发布免费算法 发布免费模型 发布数据 发布Notebook 父主题: AI Gallery(旧版)
参加活动 报名实践活动(实践) 发布技术文章(AI说) 父主题: AI Gallery(旧版)
需求广场 发布需求 父主题: AI Gallery(旧版)
用户名密码认证模式 本模式支持OBS管理、训练管理、模型管理、服务管理的鉴权。 示例代码 账号与用户的概念介绍,请参见IAM基本概念。获取您的账号、用户名等信息,请参见获取用户名、用户ID、项目名称、项目ID。 使用账号认证 “username”填写您的账号名。 1 2 from
、优化器状态、调度器状态)。当需要增加新的数据继续训练时,只需要加载Checkpoint,并用Checkpoint信息初始化训练状态即可。用户需要在代码里加上reload ckpt的代码,使能读取前一次训练保存的预训练模型。 在ModelArts训练中实现增量训练,建议使用“训练输出”功能。
#tokenizer目录,需要用户手动创建,后续操作步骤中会提示 |── Llama2-70B |── model #原始权重与tokenizer目录,需要用户手动创建,后续操作步骤中会提示 |──
Lite Server资源使用 LLM/AIGC/数字人基于Server适配NPU的训练推理指导 GPT-2基于Server适配PyTorch GPU的训练推理指导
Lite Cluster资源使用 在Lite Cluster资源池上使用Snt9B完成分布式训练任务 在Lite Cluster资源池上使用ranktable路由规划完成Pytorch NPU分布式训练 在Lite Cluster资源池上使用Snt9B完成推理任务