检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
28。版本使用的容器引擎为Containerd。 推理部署使用的服务框架是vLLM。vLLM支持v0.6.0版本。 支持FP16和BF16数据类型推理。 Lite k8s Cluster驱动版本推荐为23.0.6。 适配的CANN版本是cann_8.0.rc3。 资源规格要求 本文档中的模型运行环境是ModelArts
在代码目录下的{work_dir}/llm_train/LLaMAFactory/demo.yaml。修改详细步骤如下所示: 选择指令微调类型 sft,复制sft_yaml样例模板内容覆盖demo.yaml文件内容。 lora,复制lora_yaml样例模板内容覆盖demo.yaml文件内容。
点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed) 规格与节点数 llama2 llama2 7B lora 4096/8192
--output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data)。 --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer'
--output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data)。 --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer'
--output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data)。 --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer'
--output-prefix:处理后的数据集保存路径+数据集名称(例如:alpaca_gpt4_data)。 --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer'
--output-prefix:处理后的数据集保存路径+数据集名称(例如:alpaca_gpt4_data)。 --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer'
进入OBS管理控制台,单击桶名称进入概览页。 确保此OBS桶的加密功能关闭。如果此OBS桶为加密桶,可单击“默认加密”选项进行修改。 创建OBS桶时,桶的存储类别请勿选择“归档存储”和“深度归档存储”,归档存储的OBS桶会导致模型训练失败。 图1 查看OBS桶是否加密 检查OBS文件是否为加密文件
--output-prefix:处理后的数据集保存路径+数据集名称(例如:alpaca_gpt4_data)。 --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer'
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以
Lite Server资源管理 查看Lite Server服务器详情 启动或停止Lite Server服务器 同步Lite Server服务器状态 切换Lite Server服务器操作系统 监控Lite Server资源 NPU日志收集上传 释放Lite Server资源
GPU A系列裸金属服务器节点内如何进行NVLINK带宽性能测试方法? 场景描述 本文指导如何进行节点内NVLINK带宽性能测试,适用的环境为:Ant8或者Ant1 GPU裸金属服务器, 且服务器中已经安装相关GPU驱动软件,以及Pytorch2.0。 GPU A系列裸金属服务器
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令
VS Code ToolKit连接Notebook 本节介绍如何在本地使用ModelArts提供的VS Code插件工具VS Code ToolKit,协助用户完成SSH远程连接Notebook。 VS Code ToolKit功能介绍 前提条件 已下载并安装VS Code。详细操作请参考安装VS
服务部署、启动、升级和修改时,资源不足如何处理? 问题现象 启动服务失败,报错:资源不足,服务调度失败。(Schedule failed due to insufficient resources. Retry later.或ModelArts.3976:No resources
在代码目录下的{work_dir}/llm_train/LLaMAFactory/demo.yaml。修改详细步骤如下所示。 选择训练策略类型。 sft,复制sft_yaml样例模板内容覆盖demo.yaml文件内容。 lora,复制lora_yaml样例模板内容覆盖demo.yaml文件内容。
--datasets:评测的数据集及评测方法,其中 mmlu 是数据集,ppl 是评测方法。 --hf-type:HuggingFace模型权重类型(base,chat), 默认为chat, 依据实际的模型选择。 --hf-path:本地 HuggingFace 权重的路径,比如/ho
--datasets, 评测的数据集及评测方法,其中 mmlu 是数据集,ppl 是评测方法 --hf-type, HuggingFace模型权重类型(base,chat), 默认为chat, 依据实际的模型选择 --hf-path, 本地 HuggingFace 权重的路径,比如/ho
Standard专属资源池 ModelArts支持使用ECS创建专属资源池吗? 在ModelArts中1个节点的专属资源池,能否部署多个服务? 在ModelArts中公共资源池和专属资源池的区别是什么? ModelArts中的作业为什么一直处于等待中? ModelArts控制台为什么能看到创建失败被删除的专属资源池?