检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
后次数清零重新累计。具体计费价格请参见文字识别价格详情,类型选择“自定义模板OCR”。 套餐包 用户可以购买套餐包,扣费时,优先在套餐包内进行抵扣。超出套餐包额度,转回按需计费方式。具体计费价格请参见文字识别价格详情,类型选择“自定义模板OCR”。 自然语言处理套件 计费项 自然
后次数清零重新累计。具体计费价格请参见文字识别价格详情,类型选择“自定义模板OCR”。 套餐包 用户可以购买套餐包,扣费时,优先在套餐包内进行抵扣。超出套餐包额度,转回按需计费方式。具体计费价格请参见文字识别价格详情,类型选择“自定义模板OCR”。 自然语言处理套件 计费项 自然
模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。
模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。
模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。
模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。
模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 如果分割效果不好,建
容易识别)。 confidence:可选字段,标注目标的置信度,取值范围0-1之间。 bndbox:必选字段,标注框的类型,可选值请参见表2。 表2 标注框类型描述 type 形状 标注信息 point 点 点的坐标。 <x>100<x> <y>100<y> line 线 各点坐标。
本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作
本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作
本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作
文件放置方式请按照“单品文件夹/单品图”或者“父文件夹/单品文件夹/单品图”的组织方式。 为了保证智能标注效果,建议每个SKU,即每种类别商品的图片大于20张。一次上传文件大小不能超过10M。 后续会把SKU图片保存至OBS,需要提前创建用于存储数据的OBS桶及文件夹,且数据存储的OBS桶与ModelArts
confidence:可选字段,标注目标的置信度,取值范围0-1之间。 polygon:必选字段,标注框的类型。零售商品工作流标注时需要勾勒出商品形状,必须使用多边形标注框,即标注框类型选择“polygon”,标注信息为各点坐标,如下所示。 <x1>100<x1> <y1>100<y1>
本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作
在“应用开发>服务部署”页面,工作流会根据训练的模型自动创建技能,您可以一键安装技能至HiLens Kit设备上。 技能名称:工作流自动创建技能后,生成默认技能名称。 设备类别:当前仅支持将技能安装至HiLens Kit设备上,安装技能之前,请在同一帐号同一区域的华为HiLens控制台注册HiLens Kit设备,详细操作指导请见注册HiLens
试服务,供您模拟在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于识别图像的类别,也可以直接调用对应的API和SDK识别。 部署服务 父主题: 通用图像分类工作流
容易识别)。 confidence:可选字段,标注目标的置信度,取值范围0-1之间。 bndbox:必选字段,标注框的类型,可选值请参见表5。 表5 标注框类型描述 type 形状 标注信息 point 点 点的坐标。 <x>100<x> <y>100<y> line 线 各点坐标。
步骤6:部署服务 “服务部署”页面,工作流会根据训练的模型自动创建技能,并显示如下默认参数。 技能名称:工作流自动创建技能后,生成默认技能名称。 设备类别:当前仅支持将技能安装至HiLens Kit设备上,安装技能之前,请在同一帐号同一区域的华为HiLens控制台注册HiLens Kit设备,详细操作指导请见注册HiLens