检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
口不变? ModelArts提供多版本支持和灵活的流量策略,您可以通过使用灰度发布,实现模型版本的平滑过渡升级。修改服务部署新版本模型或者切换模型版本时,原服务预测API不会变化。 调整模型版本的操作可以参考如下的步骤。 前提条件 已存在部署完成的服务。 已完成模型调整,创建模型。
登录ModelArts管理控制台,在左侧导航栏中选择“AI专属资源池 > 弹性集群 Cluster”,进入“弹性集群 Cluster”页面。 切换到“网络”页签,单击“创建”,弹出“创建网络”页面。 图1 网络列表 在“创建网络”弹窗中填写网络信息。 网络名称:创建网络时默认生成网络名称,也可自行修改。
NPU Finetune训练指导(6.3.904) Open-Clip基于DevServer适配PyTorch NPU训练指导 AIGC工具tailor使用指导
1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。
解决方法:降低transformers版本到4.42:pip install transformers==4.42 --upgrade 问题6:使用AWQ转换llama3.1系列模型权重出现报错ValueError: `rope_scaling` must be a dictionary with
版本名称,必须是中文、字母、数字、下划线或中划线组成的合法字符串,长度为1-32位。 version_format 否 String 数据集版本格式。可选值如下: Default:默认格式 label_task_type 否 Integer 版本数据对应的标注类型。可选值如下: 0:图像分类 1:物体检测
修改ChatGLMv4-9B tokenizer文件 图5 修改ChatGLMv4-9B tokenizer文件 Qwen系列 在进行HuggingFace权重转换Megatron前,针对Qwen系列模型(qwen-7b、qwen-14b、qwen-72b)中的tokenizer 文件,需要修改代码。
修改ChatGLMv4-9B tokenizer文件 图5 修改ChatGLMv4-9B tokenizer文件 Qwen系列 在进行HuggingFace权重转换Megatron前,针对Qwen系列模型(qwen-7b、qwen-14b、qwen-72b)中的tokenizer 文件,需要修改代码。
修改ChatGLMv4-9B tokenizer文件 图5 修改ChatGLMv4-9B tokenizer文件 Qwen系列 在进行HuggingFace权重转换Megatron前,针对Qwen系列模型(qwen-7b、qwen-14b、qwen-72b)中的tokenizer 文件,需要修改代码。
修改ChatGLMv4-9B tokenizer文件 图5 修改ChatGLMv4-9B tokenizer文件 Qwen系列 在进行HuggingFace权重转换Megatron前,针对Qwen系列模型(qwen-7b、qwen-14b、qwen-72b)中的tokenizer 文件,需要修改代码。
修改ChatGLMv4-9B tokenizer文件 图5 修改ChatGLMv4-9B tokenizer文件 Qwen系列 在进行HuggingFace权重转换Megatron前,针对Qwen系列模型(qwen-7b、qwen-14b、qwen-72b)中的tokenizer 文件,需要修改代码。
Long 任务更新时间。 version_format String 数据集版本格式。可选值如下: Default:默认格式 CarbonData:Carbon格式(仅表格数据集支持) CSV:CSV格式 version_id String 数据集版本ID。 表3 ExportParams
${container_model_path}:模型地址,模型格式是HuggingFace的目录格式。即Step2 准备权重文件上传的HuggingFace权重文件存放目录。如果使用了量化功能,则使用推理模型量化章节转换后的权重。 --max-num-seqs:最大同时处理的请求数,超过后拒绝访问。
参考,实际计算请以ModelArts价格详情中的价格为准。 变更配置后对计费的影响 当前包年/包月计算资源的规格不满足您的业务需要时,您可以在ModelArts控制台发起变更规格操作,变更时系统将按照如下规则为您计算变更费用: 资源升配:新配置价格高于老配置价格,此时您需要支付新老配置的差价。
AI推理应用运行在昇腾设备上一般有两种方式: 方式1:通过Ascend PyTorch,后端执行推理,又称在线推理。 方式2:通过模型静态转换后,执行推理,又称离线推理。 通常为了获取更好的推理性能,推荐使用方式2的离线推理。下文将以Diffusers img2img onnx
Atlas 800训练服务器HCCN Tool Atlas 800 训练服务器 1.0.11 HCCN Tool接口参考主要介绍集群网络工具hccn_tool对外接口说明,包括配置RoCE网卡的IP、网关,配置网络检测对象IP和查询LLDP信息等。 Atlas 800训练服务器备件查询助手
iam:users:listUsers iam:projects:listProjects vpc.*.list eps.*.list evs.*.list ims.*.list ims.*.get √ × 查询DevServer实例列表 GET /v1/{project_id}/dev-servers mod
目前只有“图像分类”、“物体检测”、“图像分割”类型的数据集支持导出功能。 “图像分类”只支持导出txt格式的标注文件。 “物体检测”只支持导出Pascal VOC格式的XML标注文件。 “图像分割”只支持导出Pascal VOC格式的XML标注文件以及Mask图像。 导出数据为新数据集 登录ModelArt
目前只有“图像分类”、“物体检测”、“图像分割”类型的数据集支持导出功能。 “图像分类”只支持导出txt格式的标注文件。 “物体检测”只支持导出Pascal VOC格式的XML标注文件。 “图像分割”只支持导出Pascal VOC格式的XML标注文件以及Mask图像。 导出数据为新数据集 登录ModelArt
- image: swr.xxxxxx.com/xxxx/custom_pytorch_npu:v1 # 镜像地址,根据实际场景修改 imagePullPolicy: IfNotPresent