检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
下面的README文件查看当前环境内置的Python虚拟环境。 cat /home/ma-user/README 执行source命令可以切换到具体的Python环境中。 执行which python查看python路径并复制出来,以备后续配置云上Python Interpreter使用。
Server Standard自动学习、Workflow、Notebook、模型训练、模型部署 变更计费模式 不支持 支持变更为包年/包月计费模式。 变更计费模式 变更规格 不涉及 支持变更实例规格。 适用场景 适用于可预估资源使用周期的场景,价格比按需计费模式更优惠。对于长期使用者,推荐该方式。
操作系统:可以指定实例的操作系统。 容器引擎:容器引擎是Kubernetes最重要的组件之一,负责管理镜像和容器的生命周期。Kubelet通过Container Runtime Interface (CRI) 与容器引擎交互,以管理镜像和容器。此处支持选择Docker和Containerd。Container
参数类型 描述 annotation_format 否 String 标注格式。当前可取以下值: VOC:VOC格式 COCO:COCO格式 export_format 否 Integer 导出的目录格式。可选值如下: 1:树状结构。如:rabbits/1.jpg,bees/2.jpg。
P16。BertLarge使用FP32。 - 模型变更频率 模型变更场景如下: 数据增量,模型算子未变更。 数据增量,模型算子变化,例如: 网络结构变化。 AI框架版本升级,使用了新版本算子。 例如:每半年对模型进行一次变更,变更的内容包含模型结构,并升级AI框架。 - 是否使用华为MDC产品
解决方法:降低transformers版本到4.42:pip install transformers==4.42 --upgrade 问题6:使用AWQ转换llama3.1系列模型权重出现报错ValueError: `rope_scaling` must be a dictionary with
解决方法:降低transformers版本到4.42:pip install transformers==4.42 --upgrade 问题6:使用AWQ转换llama3.1系列模型权重出现报错ValueError: `rope_scaling` must be a dictionary with
解决方法:降低transformers版本到4.42:pip install transformers==4.42 --upgrade 问题6:使用AWQ转换llama3.1系列模型权重出现报错ValueError: `rope_scaling` must be a dictionary with
1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。
1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。
解决方法:降低transformers版本到4.42:pip install transformers==4.42 --upgrade 问题6:使用AWQ转换llama3.1系列模型权重出现报错ValueError: `rope_scaling` must be a dictionary with
解决方法:降低transformers版本到4.42:pip install transformers==4.42 --upgrade 问题6:使用AWQ转换llama3.1系列模型权重出现报错ValueError: `rope_scaling` must be a dictionary with
解决方法:降低transformers版本到4.42:pip install transformers==4.42 --upgrade 问题6:使用AWQ转换llama3.1系列模型权重出现报错ValueError: `rope_scaling` must be a dictionary with
解决方法:降低transformers版本到4.42:pip install transformers==4.42 --upgrade 问题6:使用AWQ转换llama3.1系列模型权重出现报错ValueError: `rope_scaling` must be a dictionary with
1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。
1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。
1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。
已标注:同时导入标注对象和标注内容,当前“自由格式”的数据集不支持导入标注内容。 为了确保能够正确读取标注内容,要求用户严格按照规范存放数据: 导入方式选择目录时,需要用户选择“标注格式”,并按照标注格式的要求存放数据,详细规范请参见标注格式章节。 导入方式选择manifest时,需要满足manifest文件的规范。
P16。BertLarge使用FP32。 - 模型变更频率 模型变更场景如下: 数据增量,模型算子未变更。 数据增量,模型算子变化,例如: 网络结构变化。 AI框架版本升级,使用了新版本算子。 例如:每半年对模型进行一次变更,变更的内容包含模型结构,并升级AI框架。 - 是否使用华为MDC产品
1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。