检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
PyTorch迁移精度调优 精度问题概述 精度调优总体思路 精度调优前准备工作 msprobe精度分析工具使用指导 父主题: GPU训练业务迁移至昇腾的通用指导
C:\Users\xxx>python --version Python *.*.* 检查是否已安装Python通用包管理工具pip。如果Python安装过程中没有安装通用包管理工具pip,则参见pip官网完成pip安装,推荐pip版本小于24.0。 在本地环境执行命令pip --version,显示如下内容说明pip已安装。
在ModelArts中如何将标注结果下载至本地? ModelArts数据集中的标注信息和数据在发布后,将以manifest格式存储在“数据集输出位置”对应的OBS路径下。 路径获取方式: 在ModelArts管理控制台,进入“数据管理>数据集”。 选择需查看数据集,单击名称左侧小
${container_model_path}:模型地址,模型格式是HuggingFace的目录格式。即Step2 准备权重文件上传的HuggingFace权重文件存放目录。如果使用了量化功能,则使用推理模型量化章节转换后的权重。 --max-num-seqs:最大同时处理的请求数,超过后拒绝访问。
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.911)
目前只有“图像分类”、“物体检测”、“图像分割”类型的数据集支持导出功能。 “图像分类”只支持导出txt格式的标注文件。 “物体检测”只支持导出Pascal VOC格式的XML标注文件。 “图像分割”只支持导出Pascal VOC格式的XML标注文件以及Mask图像。 导出到AI Gallery 用户可以将自己的数据发布到AI
jpg”,那么标注文件的文件名应为“IMG_20180919_114745.xml”。 物体检测的标注文件需要满足PASCAL VOC格式,格式详细说明请参见 表1。 数据存储示例: ├─<dataset-import-path> │ IMG_20180919_114732
通过JupyterLab在线使用Notebook实例进行AI开发 通过PyCharm远程使用Notebook实例 通过VS Code远程使用Notebook实例 通过SSH工具远程使用Notebook 管理Notebook实例 使用CodeLab免费体验Notebook ModelArts CLI命令参考 在Notebook中使用Moxing命令
在“运行时长控制”选择是否指定运行时长。 不限时长:不限制作业的运行时长,AI Gallery工具链服务部署完成后将一直处于“运行中”。 指定时长:设置作业运行几小时后停止,当AI Gallery工具链服务运行时长达到指定时长时,系统将会暂停作业。时长设置不能超过计算资源的剩余额度。 说明:
GPU推理业务迁移至昇腾的通用指导 简介 昇腾迁移快速入门案例 迁移评估 环境准备 模型适配 精度校验 性能调优 迁移过程使用工具概览 常见问题 推理业务迁移评估表 父主题: GPU业务迁移至昇腾训练推理
----2.jpg --../ 物体检测场景,其目录结构如下所示。支持jpg、jpeg、png、bmp格式的图片,xml为标准的PACAL VOC格式标注文件。 input_path/ --1.jpg --1.xml --2.jpg --2
目前只有“图像分类”、“物体检测”、“图像分割”类型的数据集支持导出功能。 “图像分类”只支持导出txt格式的标注文件。 “物体检测”只支持导出Pascal VOC格式的XML标注文件。 “图像分割”只支持导出Pascal VOC格式的XML标注文件以及Mask图像。 导出数据到OBS 登录ModelArts
从MRS导入数据到ModelArts数据集 ModelArts支持从MRS服务中导入存储在HDFS上的csv格式的数据,首先需要选择已有的MRS集群,并从HDFS文件列表选择文件名称或所在目录,导入文件的列数需与数据集schema一致。MRS的详细功能说明,请参考MRS用户指南。
tput_dir参数值路径下的training_loss.png中也可以使用可视化工具TrainingLogParser查看loss收敛情况,将trainer_log.jsonl文件长传至可视化工具页面,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练
tput_dir参数值路径下的training_loss.png中也可以使用可视化工具TrainingLogParser查看loss收敛情况,将trainer_log.jsonl文件长传至可视化工具页面,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练
tput_dir参数值路径下的training_loss.png中也可以使用可视化工具TrainingLogParser查看loss收敛情况,将trainer_log.jsonl文件长传至可视化工具页面,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练
数据输入不连续,cuDNN不支持的类型。 处理方法 禁用cuDNN,在训练前加入如下代码。 torch.backends.cudnn.enabled = False 将输入数据转换成contiguous。 images = images.cuda() images = images.permute(0, 3, 1
open("SimSun.ttf", "wb").write(ttf.content) 35 # FONT_PATH = "SimSun.ttf" FONT_PATH = os.path.join(os.getenv('DATA'), "SimSun.ttf") 父主题:
BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的半精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢或下
BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的半精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢或下