检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在线服务预测报错ModelArts.4302 问题现象 在线服务部署完成且服务已经处于“运行中”的状态后,向运行的服务发起推理请求,报错ModelArts.4302。 原因分析及处理方法 服务预测报错ModelArts.4302有多种场景,以下主要介绍两种场景: "error_msg":
模型,加载模型,执行预处理,完成推理,拼装响应体等。 操作步骤 WebSocket在线服务开发操作步骤如下: 上传镜像至容器镜像服务 使用镜像创建模型 使用模型部署在线服务 WebSocket在线服务调用 上传镜像至容器镜像服务 将准备好的本地镜像上传到容器镜像服务(SWR)。 使用镜像创建模型
部署的在线服务状态为告警 问题现象 在部署在线服务时,状态显示为“告警”。 解决方法 使用状态为告警的服务进行预测,可能存在预测失败的风险,请从以下4个角度进行排查,并重新部署。 后台预测请求过多。 如果您使用API接口进行预测,请检查是否预测请求过多。大量的预测请求会导致部署的在线服务进入告警状态。
在线服务预测报错ModelArts.4206 问题现象 在线服务部署完成且服务已经处于“运行中”的状态,向服务发起推理请求,报错“ModelArts.4206”。 原因分析 ModelArts.4206表示该API的请求流量超过了设定值。为了保证服务的平稳运行,ModelArts
在线服务预测报错DL.0105 问题现象 在线服务预测报错DL.0105,报错日志:“TypeError:‘float’object is not subscriptable”。 原因分析 根据报错日志分析,是因为一个float数据被当做对象下标访问了。 处理方法 将模型推理代码
单击操作列“部署>在线服务”,将模型部署为在线服务。 图6 部署在线服务 在“部署”页面,参考下图填写参数,然后根据界面提示完成在线服务创建。本案例适用于CPU规格,节点规格需选择CPU。如果有免费CPU规格,可选择免费规格进行部署(每名用户限部署一个免费的在线服务,如果您已经部
部署在线服务出现报错No CUDA runtime is found 问题现象 部署在线服务出现报错No CUDA runtime is found,using CUDA_HOME='/usr/local/cuda'。 原因分析 从日志报错信息No CUDA runtime is
模型NPU卡数取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推 表1 模型NPU卡数取值表 支持模型 支持模型参数量 文本序列长度 训练类型 Zero并行 规格与节点数 llama3 70B cutoff_len=4096
ppCode认证(部署模型为在线服务中的“支持APP认证”参数)。对于已部署的在线服务,ModelArts支持修改其配置开启AppCode认证。 本文主要介绍如何修改一个已有的在线服务,使其支持AppCode认证并进行在线预测。 前提条件 提前部署在线服务,具体操作可以参考案例:使用ModelArts
模型使用CV2包部署在线服务报错 问题现象 使用CV2包部署在线服务报错。 原因分析 使用OBS导入元模型,会用到服务侧的标准镜像,标准镜像里面没有CV2依赖的so的内容。所以ModelArts不支持从对象存储服务(OBS)导入CV2模型包。 处理方法 需要您把CV2包制作为自定
访问在线服务支持的访问通道 通过公网访问通道的方式访问在线服务 通过VPC访问通道的方式访问在线服务 通过VPC高速访问通道的方式访问在线服务 父主题: 将模型部署为实时推理作业
访问在线服务支持的传输协议 使用WebSocket协议的方式访问在线服务 使用Server-Sent Events协议的方式访问在线服务 父主题: 将模型部署为实时推理作业
在各模块资源监控页签查看ModelArts监控指标 训练作业:用户在运行训练作业时,可以查看多个计算节点的CPU、GPU、NPU资源使用情况。具体请参见训练资源监控章节。 在线服务:用户将模型部署为在线服务后,可以通过监控功能查看CPU、内存、GPU等资源使用统计信息和模型调用次数统计,具体参见查看服务详情章节。
使用大模型在ModelArts Standard创建模型部署在线服务 背景说明 目前大模型的参数量已经达到千亿甚至万亿,随之大模型的体积也越来越大。千亿参数大模型的体积超过200G,在版本管理、生产部署上对平台系统产生了新的要求。例如:导入模型时,需要支持动态调整租户存储配额;模
XXX,表示模型中没有导入对应依赖模块。 处理方法 依赖模块没有导入,需要您在模型推理代码中导入缺失依赖模块。 例如您的模型是Pytorch框架,部署为在线服务时出现告警:ModuleNotFoundError: No module named ‘model_service.tfserving
访问在线服务支持的认证方式 通过Token认证的方式访问在线服务 通过AK/SK认证的方式访问在线服务 通过APP认证的方式访问在线服务 父主题: 将模型部署为实时推理作业
在线服务和批量服务有什么区别? 在线服务 将模型部署为一个Web服务,您可以通过管理控制台或者API接口访问在线服务。 批量服务 批量服务可对批量数据进行推理,完成数据处理后自动停止。 批量服务一次性推理批量数据,处理完服务结束。在线服务提供API接口,供用户调用推理。 父主题:
在线服务部署是否支持包周期? 在线服务不支持包周期的计费模式。 父主题: 功能咨询
介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.905)
自定义镜像模型部署为在线服务时出现异常 问题现象 在部署在线服务时,部署失败。进入在线服务详情页面,“事件”页签,提示“failed to pull image, retry later”,同时在“日志”页签中,无任何信息。 图1 部署在线服务异常 解决方法 出现此问题现象,通常