检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
–json-key标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
–json-key标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
eddings': 8192, 'rope_type': 'llama3'} 解决方法:升级transformers版本到4.43.1:pip install transformers --upgrade 问题5:使用SmoothQuant进行W8A8进行模型量化时,报错:AttributeError:
String 从指定Workflow工作流进行复制。通过复制来创建Workflow时必填。 gallery_subscription WorkflowGallerySubscription object 来自市场订阅的Workflow。 latest_execution ExecutionBrief
annotations object 资源池的注释信息。 表5 annotations 参数 是否必选 参数类型 描述 os.modelarts/description 否 String 资源池描述信息,用于说明资源池用于某种指定场景。不能包含特殊字符!<>=&"'。 os.modelarts/order
–json-key标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
5.1 日志提示“reason:Forbidden”。 OBS限流。 参考5.1.1 OBS复制过程中提示“BrokenPipeError: Broken pipe”。 OBS其他问题。 请参考OBS服务端错误码或者采集request id后向OBS客服进行咨询。 如果是空间不足。
Label名字 Label描述 容器级别指标 pod_name 容器所属pod的名字。 pod_id 容器所属pod的ID。 node_ip 容器所属的节点IP值。 container_id 容器ID。 cluster_id 集群ID。 cluster_name 集群名称。 container_name
数字人场景 样例 场景 说明 Wav2Lip推理基于DevServer适配PyTorch NPU推理指导 Wav2Lip训练基于DevServer适配PyTorch NPU训练指导 Wav2Lip,人脸说话视频模型,训练、推理 Wav2Lip是一种基于对抗生成网络的由语音驱动的人脸
资源池的租户id,记录资源池创建在哪个租户账号下。 表7 PoolMetaAnnotations 参数 参数类型 描述 os.modelarts/description String 资源池的描述信息。 os.modelarts/billing.mode String 计费模式。可选值如下: 0:按需计费
eddings': 8192, 'rope_type': 'llama3'} 解决方法:升级transformers版本到4.43.1:pip install transformers --upgrade 问题5:使用SmoothQuant进行W8A8进行模型量化时,报错:AttributeError:
网(上限10个)。 如果需要使用打通VPC的方式实现专属资源池访问公网,由于要访问的公网地址不确定,一般是建议用户在VPC中创建SNAT。此场景下,在打通VPC后,专属资源池中作业访问公网地址,默认不能转发到用户VPC的SNAT,需要提交工单联系技术支持在专属资源池VPC的路由中
必选,选择“自定义”。 镜像 必填,填写容器镜像的地址。 容器镜像地址的填写支持如下方式。 选择自有镜像或他人共享的镜像:单击右边的“选择”,从容器镜像中选择用于训练的容器镜像。所需镜像需要提前上传到SWR服务中。 选择公开镜像:直接输入SWR服务中公开镜像的地址。地址直接填写“组织名称/镜像名称:
'function': { 'name': '对应到实际执行的函数名称', 'description': '此处是函数相关描述', 'parameters': { '_comments':
方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,
系统会自动生成一个名称,您可以根据业务需求重新命名,命名规则如下: 支持1~64位字符。 并包含大小写字母、数字、中划线(-)或下划线(_)。 Job Description 训练作业的简要描述。 Algorithm Source 训练算法来源,分为“常用框架”和“自定义镜像”两种,二者选一项即可。 常
created_at String 创建时间。 name String 执行记录名称。 execution_id String 工作流执行ID。 description String 执行记录描述。 status String 执行记录状态。 workspace_id String 工作空间ID。
19:基于gaussianblur的数据增强与原图预测结果不一致。 20:基于fliplr的数据增强与原图预测结果不一致。 21:基于crop的数据增强与原图预测结果不一致。 22:基于flipud的数据增强与原图预测结果不一致。 23:基于scale的数据增强与原图预测结果不一致。
方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,
model parallel size)=1 PP(pipeline model parallel size)=4 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4