检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ModelArts Studio大模型开发平台支持导入气象类数据集,该数据集当前包括海洋气象数据。 海洋气象数据通常来源于气象再分析。气象再分析是通过现代气象模型和数据同化技术,重新处理历史观测数据,生成高质量的气象记录。这些数据既可以覆盖全球范围,也可以针对特定区域,旨在提供完整、一致且高精度的气象数据。
CoT思维链 对于复杂推理问题(如数学问题或逻辑推理),通过给大模型示例或鼓励大模型解释推理过程,可以引导大模型生成准确率更高的结果。 单样本/多样本 可以在提示词中提供示例,让模型先学习后回答,在使用这种方法时需要约束新样例不能照抄前面给的参考样例,新样例必须多样化、不能重复等
评估任务创建成功后,单击操作列“评估”进入评估页面。 图6 评估数据集质量 在评估页面,可参考评估项对当前数据的问题进行标注,且不满足时需要单击“不通过”,满足则单击“通过”。 全部数据评估完成后,评估状态显示为“100%”,表示当前数据集已经评估完成,可以回退到“评估任务”页面,查看,单击操作列“报告”,获取数据集质量评估报告。
评估任务创建成功后,单击操作列“评估”进入评估页面。 图6 评估数据集质量 在评估页面,可参考评估项对当前数据的问题进行标注,且不满足时需要单击“不通过”,满足则单击“通过”。 图7 标记数据集问题 全部数据评估完成后,评估状态显示为“100%”,表示当前数据集已经评估完成,可以回退到“评估任务”页
练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的
旦输入了一个从未出现过的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了过拟合。请检查训练参数中的 “训练
如何判断盘古大模型训练状态是否正常 判断训练状态是否正常,通常可以通过观察训练过程中Loss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化
评估任务创建成功后,单击操作列“评估”进入评估页面。 图6 评估数据集质量 在评估页面,可参考评估项对当前数据的问题进行标注,且不满足时需要单击“不通过”,满足则单击“通过”。对于文本类数据集而言,可选择问题内容后,单击鼠标右键进行数据问题的标注。 图7 标记数据集问题 全部数据评估完成后,评估状态
录、以及数据集的删除管理等。这不仅便于用户对已发布数据集的集中管理,还可帮助用户了解每个数据集的使用情况,从而简化数据资产的维护更新流程。通过这样的统一管理,用户能够更高效地组织和利用数据资源,确保数据资产的安全性和一致性。 管理数据资产 登录ModelArts Studio大模型开发平台,进入所需空间。
下两种方式: 选择“可部分审核”:审核人员确认部分数据达到标注要求后,可以一键通过所有的标注。 选择“全部审核”:审核员在审核一部分数据后,发现标注质量均很高,则可以一键提交剩余待审核数据,默认审核通过,即可完成审核任务。 图4 设置标注人员、标注信息示例 在“标注管理”页面,单
"role": "system", "content": "请用幼儿园老师的口吻回答问题,注意语气温和亲切,通过提问、引导、赞美等方式,激发学生的思维和想象力。" }, { "role": "user",
查看评估进展 评估完成后,可以查看每条数据的评估结果。 在评估结果中,“预期结果”表示变量值(问题)所预设的期望回答,“生成结果”表示模型回复的结果。通过比对“预期结果”、“生成结果”的差异可以判断提示词效果。 父主题: 批量评估提示词效果
数据评估 > 评估任务”。 单击操作列“报告”可以查看详细的质量评估报告。 图2 查看数据集评估报告 在“查看评估报告”页面,可以查看评估概览、通过率、评估类别分布等信息。 如果数据集未完成全部评估,可以单击右上角“继续评估”,评估剩余的数据。 图3 查看评估报告详情 父主题: 评估视频类数据集
数据评估 > 评估任务”。 单击操作列“报告”可以查看详细的质量评估报告。 图2 查看数据集评估报告 在“查看评估报告”页面,可以查看评估概览、通过率、评估类别分布等信息。 如果数据集未完成全部评估,可以单击右上角“继续评估”,评估剩余的数据。 图3 查看评估报告详情 父主题: 评估图片类数据集
科学计算大模型能力调测参数说明(天气/降水预测) 参数 说明 场景 支持选择全球中期天气要素预测、全球中期降水预测。 全球中期天气要素预测:通过该模型可以对未来一段时间的天气进行预测。 全球中期降水预测:通过该模型可以对未来一段时间的降水情况进行预测。 模型服务 支持选择用于启动推理作业的模型。 中期天气要素模型
数据评估 > 评估任务”。 单击操作列“报告”可以查看详细的质量评估报告。 图2 查看数据集评估报告 在“查看评估报告”页面,可以查看评估概览、通过率、评估类别分布等信息。 如果数据集未完成全部评估,可以单击右上角“继续评估”,评估剩余的数据。 图3 查看评估报告详情 父主题: 评估文本类数据集
下两种方式: 选择“可部分审核”:审核人员确认部分数据达到标注要求后,可以一键通过所有的标注。 选择“全部审核”:审核员在审核一部分数据后,发现标注质量均很高,则可以一键提交剩余待审核数据,默认审核通过,即可完成审核任务。 图4 设置标注人员、标注信息示例 在“标注管理”页面,单
自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它无需额外的人工标签数据,因为监督信号直接从数据本身派生。 有监督学习
若目标任务本身需要生成的长度已经超过模型上限,建议您替换可支持更长长度的模型。 数据质量:请检查训练数据中是否存在包含异常截断的数据,可以通过规则进行清洗。 父主题: 大模型微调训练类问题
帮助用户高效地规划和分配任务,使团队协作更加高效。 此外,平台配备了完善的角色权限体系,覆盖超级管理员、管理员、模型开发工程师等多种角色。通过灵活的权限设置,每位用户能够在其对应的权限范围内安全高效地操作平台功能,从而最大程度保障数据的安全性与工作效率。 父主题: 创建并管理盘古工作空间