检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
虽然modelarts能够帮助我们在线上完成深度学习的模型,但是训练好的深度学习模型是怎么部署的
对信息的处理是分级的。从低级的提取边缘特征到形状(或者目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks
张量的常用操作在机器学习和深度学习中,我们往往将待处理的数据规范化为特定维度的张量。列如,在不进行批处理时,彩**像可以看成一个三维张量——图像的三个颜色通道(红,绿,蓝),图像的高和图像的宽,视频可以看成一个四维张量——视频的时间帧方向,每一帧图像的颜色通道,高和宽,三维场景可
助理解深度学习的基本概念和算法。作者使用简单的例子来显示深度学习算法的工作原理。通过这些例子一步一步组合来逐渐介绍算法更复杂的部分。这本书适合的读者面很广,从计算机初学者,到数据科学专家,到希望使用简单的方式向学生解释深度学习的教师。本书的组织架构。首先学习人工神经网络的基础知识
然而,经验风险最小化很容易导致过拟合。高容量的模型会简单地记住训练集。在很多情况下,经验风险最小化并非真的可行。最有效的现代优化算法是基于梯度下降的,但是很多有用的损失函数,如 0 − 1 损失,没有有效的导数(导数要么为零,要么处处未定义)。这两个问题说明,在深度学习中我们很少使用经验风险最小化
对信息的处理是分级的。从低级的提取边缘特征到形状(或者目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类:1.前馈深度网络(feed-forwarddeep networks
掌握神经网络图像相关案例 深度学习介绍 1.1 深度学习与机器学习的区别 学习目标 目标 知道深度学习与机器学习的区别 应用 无 1.1.1 区别 1.1.1.1 特征提取方面 机器学习的特征工程步骤是要靠手动完成的,而且需要大量领域专业知识 深度学习通常由多个层组成
VGG原理VGG16相比AlexNet的一个改进是采用连续的几个3x3的卷积核代替AlexNet中的较大卷积核(11x11,7x7,5x5)。对于给定的感受野(与输出有关的输入图片的局部大小),采用堆积的小卷积核是优于采用大的卷积核,因为多层非线性层可以增加网络深度来保证学习更复杂的模式,而且代价还比
为生成的图像,而且输出样本的类别(多输出学习)。这是基于这样的一个想法,通过判别器学习区分真实和生成的图像, 能够在没有标签的情况下学得具体的结构。通过从少量的标记数据中进行额外的增强,半监督模型可以在最少的监督数据量下获得最佳性能。 GAN也涉及了其他的混合学习的领域——自监督学习,
为生成的图像,而且输出样本的类别(多输出学习)。这是基于这样的一个想法,通过判别器学习区分真实和生成的图像, 能够在没有标签的情况下学得具体的结构。通过从少量的标记数据中进行额外的增强,半监督模型可以在最少的监督数据量下获得最佳性能。 GAN也涉及了其他的混合学习的领域——自监督学习,
《机器学习》--周志华下面在那一个具体的例子: 如果我们有6个数据,我们选择用怎么样的回归曲线对它拟合呢?看下图可以发现得到的直线 并不能较为准确的描述训练数据的形态,我们说这不是一个良好的拟合,这也叫做欠拟合如果我们再加入一个特征值
范围内搜索可行的新 x 点,或者我们可以将线上的每个点投影到约束区域。如果可能的话,在梯度下降或线搜索前将梯度投影到可行域的切空间会更高效 (Rosen, 1960)。 一个更复杂的方法是设计一个不同的、无约束的优化问题,其解可以转化成原始约束优化问题的解。例如,我们要在
说“让n ∈ N 表示元素的数目”。 向量(vector):一个向量是一列数。这些数是有序排列的。通过次序中的索引,我们可以确定每个单独的数。通常我们赋予向量粗体的小写变量名称,比如x。向量中的元素可以通过带脚标的斜体表示。向量x 的第一个元素是x1,第二个元素是x2,
Dropout的另一个重要方面是噪声是乘性的。如果是固定规模的加性噪声,那么加了噪声 ϵ 的整流线性隐藏单元可以简单地学会使 hi 变得很大(使增加的噪声 ϵ 变得不显著)。乘性噪声不允许这样病态地解决噪声鲁棒性问题。另一种深度学习算法——批标准化,在训练时向隐藏单元引入加性和乘
种语言的即时翻译,速度之快宛如魔法。谷歌翻译的背后,就是机器学习。此时,你可能会想,谷歌翻译已经经历了很长的时间,那么现在有些什么新意呢?实际上,在过去的两年时间里,谷歌已经完全将深度学习嵌入进了谷歌翻译中。事实上,这些对语言翻译知之甚少的深度学习研究人员正提出相对简单的机器学习
的信息。 贝叶斯规则可以从条件概率的定义直接推导得出,但我们最好记住这个公式的名字,因为很多文献通过名字来引用这个公式。这个公式是以 Reverend Thomas Bayes 来命名的,他是第一个发现这个公式的特例的人。这里介绍的一般形式由Pierre-Simon Laplace
HCIA-AI V3.0系列课程。本课程主要讲述深度学习相关的基本知识,其中包括深度学习的发展历程、深度学习神经 网络的部件、深度学习神经网络不同的类型以及深度学习工程中常见的问题。
深度神经网络:深度学习的模型有很多,目前开发者最常用的深度学习模型与架构包括卷积神经网络 (CNN)、深度置信网络 (DBN)、受限玻尔兹曼机 (RBM)、递归神经网络 (RNN & LSTM & GRU)、递归张量神经网络 (RNTN)、自动编码器 (AutoEncoder)、生成对抗网络
深度学习区别于传统的浅层学习,深度学习的不同在于: (1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;(2)明确了特征学习的重要性。也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更容易。与人工规则构造特征的方法相比,