已找到以下 10000 条记录
  • 深度学习深度前馈网络

    个神经元,它接收输入来源于许多其他单元,并且计算它自己激活值。使用多层向量值表示想法来源于神经科学。用于计算这些表示函数 f(i)(x) 选择,也或多或少地受到神经科学观测指引,这些观测是关于生物神经元计算功能。然而,现代神经网络研究受到更多是来自许多数学和工

    作者: 小强鼓掌
    1256
    4
  • 深度学习之多任务学习

    多任务学习 (Caruana, 1993) 是通过合并几个任务中样例(可以视为对参数施加软约束)来提高泛化一种方式。额外训练样本以同样方式将模型参数推向泛化更好方向,当模型一部分在任务之间共享时,模型这一部分更多地被约束为良好值(假设共享是合理),往往能更好

    作者: 小强鼓掌
    532
    1
  • 深度学习之构建机器学习算法

    合模型,损失函数和优化算法来构建学习算法配方同时适用于监督学习和无监督学习。线性回归实例说明了如何适用于监督学习。无监督学习时,我们需要定义一个只包含 X 数据集,一个合适无监督损失函数和一个模型。例如,通过指定如下损失函数可以得到PCA第一个主向量:J(w) = Ex∼pˆdata

    作者: 小强鼓掌
    830
    3
  • 深度学习之流形学习

    中大部分区域都是无效输入,感兴趣输入只分布在包含少量点子集构成一组流形中,而学习函数中感兴趣输出变动只位于流形中方向,或者感兴趣变动只发生在我们从一个流形移动到另一个流形时候。流形学习是在连续数值数据和无监督学习设定下被引入,尽管这个概率集中想法也能够泛化到离

    作者: 小强鼓掌
    1053
    2
  • 深度学习之流形学习

    中大部分区域都是无效输入,感兴趣输入只分布在包含少量点子集构成一组流形中,而学习函数中感兴趣输出变动只位于流形中方向,或者感兴趣变动只发生在我们从一个流形移动到另一个流形时候。流形学习是在连续数值数据和无监督学习设定下被引入,尽管这个概率集中想法也能够泛化到离散

    作者: 小强鼓掌
    813
    1
  • 适合新手深度学习综述(3)--最新进展

    深度架构演变人工神经网络 (ANN) 已经取得了长足进步,同时也带来了其他深度模型。第一代人工神经网络由简单感知器神经层组成,只能进行有限简单计算。第二代使用反向传播,根据错误率更新神经元权重。然后支持向量机 (SVM) 浮出水面,在一段时间内超越 ANN。为了克服反

    作者: @Wu
    237
    2
  • 分享深度学习发展混合学习

      这种学习范式试图跨越监督学习和非监督学习之间界限。由于缺少标签数据和收集标签数据集高成本,它通常用于业务环境中。从本质上讲,混合学习就是这个问题答案。我们如何使用监督学习方法来解决或联系非监督学习问题?例如,半监督学习在机器学习领域正变得越来越流行,因为它可以很好地处理

    作者: 初学者7000
    931
    1
  • 深度学习初体验

    通过对课程学习,从对EI初体验到对深度学习基本理解,收获了很多,做出如下总结:深度学习是用于建立、模拟人脑进行分析学习神经网络,并模仿人脑机制来解释数据一种机器学习技术。它基本特点是试图模仿大脑神经元之间传递,处理信息模式。最显著应用是计算机视觉和自然语言处理

    作者: ad123445
    8090
    33
  • 深度学习现实应用

    Transformers)模型,采用迁移学习和微调方法,进一步刷新了深度学习方法在自然语言处理任务上技术前沿。到目前为止,面向自然语言处理任务深度学习架构仍在不断进化,与强化学习、无监督学习结合应该会带来效果更优模型。1.3.4 其他领域深度学习在其他领域(如生物学、医疗和金融

    作者: 角动量
    2054
    4
  • 深度学习在环保

    年到 2018 年,短短六年时间里,深度学习所需计算量增长了 300,000%。然而,与开发算法相关能耗和碳排放量却鲜有被测量,尽管已有许多研究清楚地证明了这个日益严峻问题。 针对这一问题,哥本哈根大学计算机科学系两名学生,协同助理教授 一起开发了一个软件程序,它可以计算

    作者: 初学者7000
    839
    2
  • 《MXNet深度学习实战》—1.1.3 深度学习

    搭建起来一样,稍有不同是,在神经网络中层类型更多样,而且层与层之间联系复杂多变。深度学习深度主要就是来描述神经网络中层数量,目前神经网络可以达到成百上千层,整个网络参数量从万到亿不等,所以深度学习并不是非常深奥概念,其本质上就是神经网络。神经网络并不是最近几年才

    作者: 华章计算机
    发表时间: 2019-06-16 16:21:27
    3404
    0
  • 分享深度学习算法

    种架构所有方法之间异同。其分析角度包括训练数据集、网络结构设计、它们在重建性能、训练策略和泛化能力上效果。对于一些关键方法,作者还使用了公开数据集和私有数据进行总结和比较,采用私有数据目的是测试各类方法在全新场景下泛化性能。这篇论文能够为研究深度立体匹配研究人

    作者: 初学者7000
    953
    3
  • 深度学习之基于梯度学习

    我们到目前为止看到线性模型和神经网络最大区别,在于神经网络非线性导致大多数我们感兴趣损失函数都成为了非凸。这意味着神经网络训练通常使用迭代、基于梯度优化,仅仅使得代价函数达到一个非常小值;而不是像用于训练线性回归模型线性方程求解器,或者用于训练逻辑回归或SVM凸优化算

    作者: 小强鼓掌
    833
    2
  • 深度学习笔记之评估方差

    将数据集里所有信息归纳到一个单独点估计。贝叶斯方法和最大似然方法第二个最大区别是由贝叶斯先验分布造成。先验能够影响概率质量密度朝参数空间中偏好先验区域偏移。实践中,先验通常表现为偏好更简单或更光滑模型。对贝叶斯方法批判认为先验是人为主观判断影响预测来源。当训练数

    作者: 小强鼓掌
    724
    2
  • PyTorch深度学习实战 | 深度学习框架(PyTorch)

    实地执行,所以当用户代码出现缺陷(bug)时候,可以通过这些信息轻松快捷地找到出错代码,不会让用户在调试(Debug)时候因为错误指向或者异步和不透明引擎浪费太多时间。 PyTorch代码相对于TensorFlow而言,更加简洁直观,同时对于TensorFlow高

    作者: TiAmoZhang
    发表时间: 2023-03-16 07:53:51
    749
    0
  • 线性代数“深度学习”笔记

    线性代数作为数学一个分支,广泛应用于科学和工程中。然而,因为线性代数是主要面向连续数学,而非离散数学。掌握好线性代数对于理解和从事机器学习算法相关工作是很有必要,尤其是深度学习算法而言。线性代数提供了被称为矩阵逆(matrix inversion)强大工具。对于大多数矩阵A,我们都能通过矩阵逆解析地求解式(2

    作者: QGS
    717
    2
  • 深度学习笔记之归纳准则

    除了最大似然估计,还有其他归纳准则,其中许多共享一致估计性质。然而,一致估计统计效率(statistic efficiency) 可能区别很大。某些一致估计可能会在固定数目的样本上获得一个较低泛化误差,或者等价地,可能只需要较少样本就能达到一个固定程度泛化误差。通常,统计效率研究于有参情况(parametric

    作者: 小强鼓掌
    931
    3
  • 什么是深度学习深度学习与Mindspore实践》今天你读书了吗?

    (AutoEncoder)、生成对抗网络 (GAN)等。深度学习方法处理计算机视觉问题过程类似于人类学习过程:我们搭建深度学习模型通过对现有图片不断学**结出各类图片特征,最后输出一个理想模型,该模型能够准确预测新图片所属类别。深度学习深度”体现在将数据转换为所需要数据层数之深。给定模型进行

    作者: QGS
    946
    0
  • 深度学习模型结构

    对信息处理是分级。从低级提取边缘特征到形状(或者目标等),再到更高层目标、目标的行为等,即底层特征组合成了高层特征,由低到高特征表示越来越抽象。深度学习借鉴这个过程就是建模过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks

    作者: QGS
    646
    2
  • 部署深度学习模型

    虽然modelarts能够帮助我们在线上完成深度学习模型,但是训练好深度学习模型是怎么部署

    作者: 初学者7000
    877
    3