检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
全参微调:直接在模型上训练,影响模型全量参数的微调训练,效果较好,收敛速度较慢,训练时间较长。 LoRA微调:冻结原模型,通过往模型中加入额外的网络层,并只训练这些新增的网络层参数,效果接近或略差于全参训练,收敛速度快,训练时间短。 增量预训练:在现有预训练模型基础上,利用新数据或特
A系列裸金属服务器如何更换NVIDIA和CUDA? 更多 开发环境 在ModelArts的Notebook中使用不同的资源规格训练时为什么训练速度差不多? ModelArts的Notebook实例upload后,数据会上传到哪里? 开发环境中不同Notebook规格资源“/cache”目录的大小
中的第一行表示的是标注对象文件中的第一行的标注。 例如,标注对象“COMMENTS_114745.txt”的内容如下所示。 手感很好,反应速度很快,不知道以后怎样 三个月前买了一个用的非常好果断把旧手机替换下来尤其在待机方面 没充一会电源怎么也会发热呢音量健不好用回弹不好 算是给
表示服务部署成功。预计时长4分钟左右。 步骤4:预测结果 在线服务部署完成后,单击“预测”页签。 在“预测”页签,单击“上传”,上传一个测试图片,单击“预测”查看预测结果。此处提供一个样例图片供预测使用。 本案例中使用的订阅模型可以识别81类常见超市商品,模型对预测图片有一定范
搜索指标为目标函数的值,通常可以设置为loss、accuracy等。通过优化搜索指标的目标值超优化方向收敛,找到最契合的超参,提高模型精度和收敛速度。 表1 搜索指标参数 参数 说明 名称 搜索指标的名称。需要与您在代码中打印的搜索指标参数保持一致。 优化方向 可选“最大化”或者“最小化”。
(Press CTRL+C to quit) Step7 推理请求 使用命令测试推理服务是否正常启动。服务启动命令中的参数设置请参见表1。 方式一:通过OpenAI服务API接口启动服务使用以下推理测试命令。${docker_ip}替换为实际宿主机的IP地址。${containe
--port:服务部署的端口,注意如果不同实例部署在一台机器上,不同实例需要使用不同端口号。分离部署对外服务使用的是scheduler实例端口,在后续推理性能测试和精度测试时,服务端口需要和scheduler实例端口保持一致。 --model:HuggingFace下载的官方权重 --max-num-seqs:同时处理的最大句子数量
--port:服务部署的端口,注意如果不同实例部署在一台机器上,不同实例需要使用不同端口号。分离部署对外服务使用的是scheduler实例端口,在后续推理性能测试和精度测试时,服务端口需要和scheduler实例端口保持一致。 --model:HuggingFace下载的官方权重 --max-num-seqs:同时处理的最大句子数量
BASE_IMAGE=${base_image} . 注意:nerdctl build 会去镜像仓库拉取镜像,不会直接使用本地镜像。构建前可以nerdctl pull拉取测试镜像是否能拉取成功。 <镜像名称>:<版本名称>:定义镜像名称。示例:pytorch_2_1_ascend:20240606。 ${base_image}为基础镜像地址。
实例时创建并保存的密钥对文件。 单击将连接重命名,可以自定义一个便于识别的名字,单击OK。 配置完成后,单击Test Connection测试连通性。 选择Yes,显示Successfully connected表示网络可以连通,单击OK。 在最下方再单击OK保存配置。 图2 配置SSH
MHz >0 instance_id,npu 35 PCIE链路 npu_link_cap_speed NPU链路最大传输速度 该指标描述NPU设备支持的最大传输速度 GT/s ≥0 instance_id,npu 310P 300IDuo Snt9B Snt9C 36 npu_link_cap_width
(Press CTRL+C to quit) Step7 推理请求 使用命令测试推理服务是否正常启动。服务启动命令中的参数设置请参见表1。 方式一:通过OpenAI服务API接口启动服务使用以下推理测试命令。${docker_ip}替换为实际宿主机的IP地址。${containe
od_name}为yourapp-87d9b5b46-c46bk。 使用命令测试推理服务是否正常启动。服务启动命令中的参数设置请参见表1。 方式一:通过OpenAI服务API接口启动服务使用以下推理测试命令。${model_path}请替换为实际使用的模型名称。 curl -X POST
计算节点规格:华北-北京四可支持限时免费的规格,但每个用户仅允许创建一个基于此免费规格的实例。 按需计费规格,使用完之后请及时停止Workflow,避免产生不必要的费用。 测试推理服务:工作流运行完成后,在服务部署节点右侧单击“实例详情”跳转至推理服务详情页。或者在ModelArts管理控制台,选择“部署上线>在
"NHWC"], description="输入数据类型,NHWC表示channel在最后,NCHW表channel在最前,默认值NCHW(速度有提升)")), wf.AlgorithmParameters(name="best_model", value=wf
"NHWC"], description="输入数据类型,NHWC表示channel在最后,NCHW表channel在最前,默认值NCHW(速度有提升)")), wf.AlgorithmParameters(name="best_model", value=wf
--port:服务部署的端口,注意如果不同实例部署在一台机器上,不同实例需要使用不同端口号。分离部署对外服务使用的是scheduler实例端口,在后续推理性能测试和精度测试时,服务端口需要和scheduler实例端口保持一致。 --model:HuggingFace下载的官方权重 --max-num-seqs:同时处理的最大句子数量
(Press CTRL+C to quit) Step7 推理请求 使用命令测试推理服务是否正常启动。服务启动命令中的参数设置请参见表1。 方式一:通过OpenAI服务API接口启动服务使用以下推理测试命令。${docker_ip}替换为实际宿主机的IP地址。如果启动服务未添加s
要重新生成缓存时使用 preprocessing_num_workers 16 用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradien
BASE_IMAGE=${base_image} . 注意:nerdctl build会去镜像仓库拉取镜像,不会直接使用本地镜像。构建前可以使用nerdctl pull命令拉取测试镜像,查看是否能拉取成功。 <镜像名称>:<版本名称>:定义镜像名称。示例:pytorch_2_1_ascend:20240606。 ${base_image}为基础镜像地址。