检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
让模拟出的天气接近真实世界中的变化。 CNOP噪音通过在初始场中引入特定的扰动来研究天气系统的可预报性,会对扰动本身做一定的评判,能够挑选出预报结果与真实情况偏差最大的一类初始扰动。这些扰动不仅可以用来识别最可能导致特定天气或气候事件的初始条件,还可以用来评估预报结果的不确定性。
如果您有新的观测数据,可以使用微调来更新模型的权重,以适应新数据。 中期海洋智能预测模型的训练类型选择建议: 中期海洋智能预测模型的训练支持预训练、微调两种操作,如果直接使用平台预置的区域中期海洋智能预测模型不满足您的使用要求时,可以进行预训练或微调。预训练、微调操作的适用场景如下:
部署任务创建成功后,可以查看大模型部署的任务详情,具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,完成创建科学计算大模型部署任务后,可以查看模型的部署状态。 当状态显示为“运行中”
选择“微调”。 基础模型 选择所需微调的基础模型。 训练参数 数据集 训练数据集。 类别特征列 指定使用LabelEncoder处理的字符串类型类别特征的列表。格式为["列名1","列名2"],默认设置为[],表示没有需要处理的类别特征。 LabelEncoder的作用是将类别特征转换为数值型特征,使模型能够处理这些特征。
部署任务创建成功后,可以查看大模型部署的任务详情,具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,完成创建CV大模型部署任务后,可以查看模型的部署状态。 当状态显示为“运行中”时
撰写提示词 提示词是用来引导模型生成的一段文本。撰写的提示词应该包含任务或领域的关键信息,如主题、风格、格式等。 撰写提示词时,可以设置提示词变量。即在提示词中通过添加占位符{{ }}标识表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,将提示词设
建,详情请联系客服。 热身轮次 表示在模型训练初期,逐步增加学习率到预设值的训练轮次,用于帮助模型在训练初期稳定收敛,避免大幅度的参数更新导致不稳定的学习过程。 锚框的长边和短边的比例 定义检测物体锚框的长宽比。通过设置不同的长短比例,模型可以更好地适应多种尺寸和形状的物体。 锚框大小
部署任务创建成功后,可以查看大模型部署的任务详情,具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,完成创建预测大模型部署任务后,可以查看模型的部署状态。 当状态显示为“运行中”时
部署任务创建成功后,可以查看大模型部署的任务详情,具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,完成创建专业大模型部署任务后,可以查看模型的部署状态。 当状态显示为“运行中”时
明确任务需求 需要站在模型的角度理解相关任务的真实底层任务,并清晰描述任务要求。 例如,在文档问答任务中,任务本质不是生成,而是抽取任务,需要让模型“从文档中抽取出问题的答案,不能是主观的理解或解释,不能修改原文的任何符号、字词和格式”, 如果使用“请阅读上述文档,并生成以下问题
强模型的泛化能力。取值范围:[0,1]。 给输入数据加噪音的尺度 给输入数据加噪音的尺度,定义了给输入数据加噪音的尺度。这个值越大,添加的噪音越强烈,模型的正则化效果越强,但同时也可能会降低模型的拟合能力。取值范围:[0,1]。 给输出数据加噪音的概率 给输出数据加噪音的概率,定
Face团队推出的一种大模型请求格式。 接口的响应体需要按照jsonpath语法要求进行填写,jsonpath语法的作用是从响应体的json字段中提取出所需的数据。 评测配置 评测类型 选择“自动评测”。 评测规则 选择“基于规则”。 评测数据集 评测模板:使用预置的专业数据集进行评测。
提供准确的结果。 迁移能力强 盘古大模型的迁移能力是其适应多变业务需求的关键。除了在已有领域中表现出色,它还能通过少量的新数据快速迁移到新的领域或场景。这种迁移能力使模型能够在面对新挑战时迅速调整和优化,提供适应新领域的服务。 通过微调技术,盘古大模型能够在保持原有优势的同时,融
间差距的指标。该值越小,表示模型在表面(海表)变量的预测精度越高。 RMSE 均方根误差,衡量预测值与真实值之间差距的指标。它是所有单个观测的平方误差的平均值的平方根。该值越小,代表模型性能越好。 MAE 平均绝对误差,衡量预测值与真实值之间差距的指标。它是所有单个观测的绝对误差的平均值。该值越小,代表模型性能越好。
模型预测结果中,所有预测正确的样本占总样本的比例。数值越高,模型效果越好。 精准率 精准率是指在模型预测为正类的样本中,真正类样本的比例。数值越高,表明模型在检测正类样本时的准确性越高。 召回率 召回率是指在所有实际为正类的样本中,被模型正确预测为正类的比例。数值越高,表明模型在检测正类样本时的全面性越高。
平均交并比是所有类别的交并比的平均值。数值越高,表明模型在所有类别上的性能越好。 像素精度 像素精度表示模型正确分类的像素数量占总像素数量的比例。数值越高,表明模型性能越好。 精准率 精准率是指在模型预测为正类的样本中,真正类样本的比例。数值越高,表明模型在检测正类样本时的准确性越高。 召回率
敛到一个较小的值。 验证损失值 模型在验证集上的损失值。值越小,意味着模型对验证集数据的泛化能力越好。 获取训练日志 单击训练任务名称,可以在“日志”页面查看训练过程中产生的日志。 对于训练异常或失败的任务可以通过训练日志定位训练失败的原因。典型训练报错和解决方案请参见NLP大模型训练常见报错与解决方案。
对话问答能力。 准备工作 请确保您有预置的NLP大模型,并已完成模型的部署操作,详见《用户指南》“开发盘古NLP大模型 > 部署NLP大模型 > 创建NLP大模型部署任务”。 使用“能力调测”功能 调用API接口 “能力调测”功能支持用户直接调用已部署的预置服务,使用步骤如下: 登录ModelArts
> 数据标注”,单击页面右上角“创建标注任务”。 在“创建标注任务”页面选择需要标注的文本类数据集,并选择标注项。 选择标注项时,不同类型的数据文件对应的标注项有所差异,可基于页面提示进行选择。 单击“下一步”,可查看效果预览。 单击“下一步”,参考表1配置标注分配与审核。 表1 标注分配与审核配置
其中,各参数介绍如下: 变量取值:输入参数的各个变量取值。取值可以是数据集中的字段变量,也可以自定义变量值。 保存至任务输出参数(可选):该参数为输出的结果。由于输出结果为问答对形式,因此生成的问题必须选择context参数,回答必须选择target参数。 模型选择:选择平台预置的大模型,用于指令合成。