检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
of DataSource objects 数据集输入位置,用于将此目录及子目录下的源数据(如图片/文件/音频等)同步到数据集。对于表格数据集,该参数为导入目录。表格数据集的工作目录不支持为KMS加密桶下的OBS路径。目前仅支持传入单个DataSource。 dataset_name
当前华为云中国站和国际站所有Region均已上线ModelArts 6.7.0版本。 ModelArts 6.7.0版本中针对Ascend Snt9B资源的周边依赖组件配套版本关系如下表所示。 表1 ModelArts 6.7.0版本配套关系表 强依赖组件 Ascend Snt9B配套版本 CCE
原因分析 分布式Tensorflow不能使用“tf.variable”要使用“tf.get_variable”。 处理方法 请您将“启动文件”中的“tf.variable”替换为“tf.get_variable”。 父主题: 业务代码问题
fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 父主题: 常见错误原因和解决方法
验证集,不支持指定。 切分比例的指定: 在发布数据集时,仅“图像分类”、“物体检测”、“文本分类”和“声音分类”类型数据集支持进行数据切分功能。 一般默认不启用该功能。启用后,需设置对应的训练验证比例。 输入“训练集比例”,数值只能是0~1区间内的数。设置好“训练集比例”后,“验
task") 参数说明 表1 请求参数 参数 是否必选 参数类型 描述 task_name 是 String 标注任务的名称。 task_type 是 Integer 标注任务的类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组
String 自定义镜像训练作业的自定义镜像的容器的启动命令。例如python train.py。 parameters Array of Parameter objects 训练作业的运行参数。 policies policies object 作业支持的策略。 inputs Array
version_id 否 String 数据集版本ID。传入版本ID查询数据集相应版本的样本列表。 offset 否 Integer 分页列表的起始页,默认为0。 limit 否 Integer 指定每一页返回的最大条目数,取值范围[1,100],默认为10。 父主题: 样本管理
String 自定义镜像训练作业的自定义镜像的容器的启动命令。例如python train.py。 parameters Array of Parameter objects 训练作业的运行参数。 policies policies object 作业支持的策略。 inputs Array
题。 智能边缘平台(Intelligent EdgeFabric)通过纳管您的边缘节点,提供将云上应用延伸到边缘的能力,联动边缘和云端的数据,满足客户对边缘计算资源的远程管控、数据处理、分析决策、智能化的诉求。 ModelArts支持将模型通过智能边缘平台IEF,在边缘节点将模型
objects 节点的输入项。 outputs 否 Array of JobOutput objects 节点的输出项。 step_uuid 否 String 节点的UUID,唯一性标识。 properties 否 Map<String,Object> 节点的属性。 events
w-1.8”的环境中使用pip安装Shapely。 打开一个Notebook实例,进入到Launcher界面。 在“Other”区域下,选择“Terminal”,新建一个terminal文件。 在代码输入栏输入以下命令,获取当前环境的kernel,并激活需要安装依赖的python环境。
8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。
8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。
fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 父主题: 常见错误原因和解决方法
connect to endpoint”。 处理方法 对于OBS连接不稳定的现象,通过增加代码来解决。您可以在代码最前面增加如下代码,让TensorFlow对ckpt和summary的读取和写入可以通过本地缓存的方式中转解决: import moxing.tensorflow as mox
算法名称。限制为1-64位只含数字、字母、下划线和中划线的名称。 description 否 String 对算法的描述,默认为“NULL”,字符串的长度限制为[0, 256]。 workspace_id 否 String 指定算法所处的工作空间,默认值为“0”。“0” 为默认的工作空间。 ai_project
Module named XXX,表示模型中没有导入对应依赖模块。 处理方法 依赖模块没有导入,需要您在模型推理代码中导入缺失依赖模块。 例如您的模型是Pytorch框架,部署为在线服务时出现告警:ModuleNotFoundError: No module named ‘model_service
以及选不到Kernel。 图1 报错Server Connection Error截图 图2 选不到Kernel 原因分析 用户误操作引起的。 解决方案 打开Terminal窗口,执行以下命令启动kernelgateway服务。 API_TYPE=kernel_gateway.jupyter_websocket
not subscriptable”。 原因分析 根据报错日志分析,是因为一个float数据被当做对象下标访问了。 处理方法 将模型推理代码中的x[0][i]修改为x[i],重新部署服务进行预测。 父主题: 服务预测