检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
可以查看到调用链中该组件的输入和输出。 此外,平台支持配置构建应用所需的NLP大模型参数。 单击应用右上角的,打开大模型参数配置页面。配置参数见表1,完成大模型参数配置。 表1 大模型参数配置 参数 说明 模型选择 选择要使用的LLM,不同的模型效果存在差异。 模式选择 用于配置大模型的输出多样性。 包含取值:
可用于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计。 CTS的详细介绍和开通配置方法,请参见CTS快速入门。 父主题: 安全
开始:工作流的入口组件,该组件的配置详见配置开始组件。 结束:输出工作流的执行结果,该组件的配置详见配置结束组件。 LLM:初始化完成的大模型节点,没有额外的Prompt配置,直接接受用户原始输入,并输出大模型执行后的原始输出,该组件的配置详见配置大模型组件。 用户可根据需求配置所需组件,并
在选择是否通过调整提示词或场景微调来解决任务时,需要从以下两个主要方面进行考虑: 业务数据的可获取性 考虑该任务场景的业务数据是否公开可获取。如果该场景的相关数据可以公开获取,说明模型在训练阶段可能已经接触过类似的语料,因此具有一定的理解能力。这时,通过调整提示词通常可以有效引导模型生成合理的回答。
取值是否正确。 PANGU.3307 domain has not added the opened API. 账号未开通该API服务。 请确认是否已开通该API服务。 PANGU.3308 The accessed API does not match the existing
管理NLP大模型部署任务 模型更新、修改部署 成功创建部署任务后,如需修改已部署的模型或配置信息,可以在详情页面单击右上角的“模型更新”或“修改部署”进行调整。更新模型时可以替换模型,但在修改部署时模型不可替换。 在“模型更新”或“修改部署”后进行升级操作时,可选择全量升级或滚动升级两种方式:
请求URI 参数 说明 URI-scheme 传输请求的协议,当前所有API均采用HTTPS协议。 Endpoint 承载REST服务端点的服务器域名或IP。 resource-path 资源路径,即API访问路径。从具体API的URI模块获取。 query-string 查询参数,可选
支持您添加或去除新的高空层次,训练任务会根据您配置的高空层次对模型重新进行训练。 高空变量 设置训练数据的高空变量信息,在“预训练”的场景中也支持您添加或去除新的高空变量,选择后会在变量权重中增加或去除该变量权重,训练任务会根据您配置的高空变量对模型重新进行训练。 表面变量 设置
数据量足够,为什么盘古大模型微调效果仍然不好 这种情况可能是由于以下原因导致的,建议您排查: 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大、样本中存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 大模型微调训练类问题
单元默认采用包周期计费,数据智算单元、数据通算单元默认采用按需计费,训练单元采用包周期和按需计费两种方式。 盘古大模型使用周期内不支持变更配置。
为什么微调后的盘古大模型只能回答训练样本中的问题 当您将微调的模型部署以后,输入一个已经出现在训练样本中的问题,模型生成的结果很好,一旦输入了一个从未出现过的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制
为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的
为什么微调后的盘古大模型总是重复相同的回答 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成了复读机式的结果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或
为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场景是否一致,
而,较大的数据批量也会占用更多的显存资源,这可能导致显存不足,并且会延长每次训练的时长。 训练轮数 指完成全部训练数据集训练的次数。 学习率 学习率决定了每次训练时模型参数更新的幅度。选择合适的学习率非常重要:如果学习率太大,模型可能会无法收敛;如果学习率太小,模型的收敛速度会变得非常慢。
能提供更低的平均成本和一定的稳定性。 对于短期、突发或不可预测的业务需求,按需计费模式则更为合适,因为它提供了更高的灵活性和避免长期预付费可能带来的压力。 父主题: 计费FAQ
设置背景及人设 背景: 模型基于简单prompt的生成可能是多范围的各方向发散的,如果您需要进行范围约束,或加强模型对已有信息的理解,可以进行提示:“结合xxx领域的专业知识...理解/生成...”、“你需要联想与xxx相关的关键词、热点信息、行业前沿热点等...生成...”,或
能。 模型压缩:在模型部署前,进行模型压缩是提升推理性能的关键步骤。通过压缩模型,能够有效减少推理过程中的显存占用,节省推理资源,同时提高计算速度。当前,平台支持对NLP大模型进行压缩。 模型部署:平台提供了一键式模型部署功能,用户可以轻松将训练好的模型部署到云端或本地环境中。平
用户可以根据需求灵活划分工作空间,实现资源的有序管理与优化配置,确保各类资源在不同场景中的最大化利用。为进一步优化资源的管理,平台还提供了多种角色权限体系。用户可以根据自身角色从管理者到各模块人员进行不同层级的权限配置,确保每个用户在其指定的工作空间内,拥有合适的访问与操作权限
数据量和质量均满足要求,为什么盘古大模型微调效果不好 这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或