检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如何保证训练和调试时文件路径保持一致 云上挂载路径 Notebook中挂载SFS后,SFS默认在“/home/ma-user/work”路径下。
GPU裸金属服务器更换NVIDIA驱动后执行nvidia-smi提示Failed to initialize NVML 问题现象 华为云裸金属服务器,NVIDIA驱动卸载后重新安装。
解决方法 以对应租户的华为云账号登录SWR服务,查看镜像是否已经Push成功。 如果Push成功,请重新注册镜像。 如果未Push成功,联系SRE查看对应实例的节点是否有问题。 父主题: 自定义镜像故障
图1 搜索资产 表1 快速搜索方式 区域 类型 搜索方式 支持的AI资产 1 搜索华为云官方资产 在页面单击“官方”,筛选出所有的华为云官方资产,该类资产均可免费使用。 Notebook、算法、模型 2 搜索精选商品 在页面单击“精选”,筛选出所有被标记为精选的资产。
此操作指导是某一华为云账号将其OBS桶权限授予其他华为云账号。如果您的账号是IAM用户或其他场景时,请参见《OBS权限配置指南 》> 典型场景配置案例,查找授予OBS桶权限的指导。
如果订阅的是非华为云官方资产,则会弹出“温馨提示”页面,勾选并阅读《数据安全与隐私风险承担条款》和《华为云AI Gallery服务协议》后,单击“继续订阅”才能继续进行模型订阅。
图2 打通VPC参数选择 如果没有VPC可选,可以单击右侧的“创建虚拟私有云”,跳转到网络控制台,申请创建虚拟私有云。 如果没有子网可选,可以单击右侧的“创建子网”,跳转到网络控制台,创建可用的子网。
创建网络 购买ModelArts专属资源池 基本配置: 权限配置 obsutils安装和配置 (可选)工作空间配置 训练: 线下容器镜像构建及调试 上传镜像 上传数据和算法至OBS(首次使用时需要) 使用Notebook进行代码调试 创建训练任务 单机多卡 资源购买: 购买虚拟私有云VPC
VS Code ToolKit连接Notebook 该方式是指用户在VS Code上使用ModelArts VS Code Toolkit插件提供的登录和连接按钮,连接云上实例。
注册API并授权给APP 功能介绍 注册API并将API授权给APP,只有对服务有更新权限的华为云用户可以调用。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。
使用华为云账号登录ModelArts管理控制台,在左侧导航栏单击“权限管理”,进入“权限管理”页面,单击“添加授权”。
SFS Turbo:增加挂载配置,选择SFS名称,云上挂载路径为“/home/ma-user/work”。 为了和Notebook调试时代码路径一致,保持相同的启动命令,因此云上挂载路径需要填写为“/home/ma-user/work”。
成本分析 通过华为云费用账单来分析账号下的成本支出情况。 成本优化 长期使用的资源,建议客户使用更优惠的方式购买(包年包月);针对临时使用的资源,您可选择按需的资源规格,避免浪费。
如果订阅的是非华为云官方资产,则会弹出“温馨提示”页面,勾选并阅读《数据安全与隐私风险承担条款》和《华为云AI Gallery服务协议》后,单击“继续订阅”才能继续进行算法订阅。
图5 启动连接Notebook 连接状态下,单击Notebook名称,根据提示断开本地IDE与云上Notebook的连接。
策略及授权项说明 如果您需要对您所拥有的ModelArts进行精细的权限管理,您可以使用统一身份认证服务(Identity and Access Management,简称IAM),如果华为云帐号已经能满足您的要求,不需要创建独立的IAM用户,您可以跳过本章节,不影响您使用ModelArts
华为云有网卡健康状态监控机制。 父主题: Lite Server
SFS Turbo:增加挂载配置,选择SFS名称,云上挂载路径为“/home/ma-user/work”。 为了和Notebook调试时代码路径一致,保持相同的启动命令,云上挂载路径需要填写为“/home/ma-user/work”。
大于500MB数据量,请先上传到OBS中,再从OBS下载到云上Notebook。 图1 数据通过OBS中转上传到Notebook 上传数据至OBS,具体操作请参见上传文件至OBS桶。
本文介绍华为云A系列GPU裸金属服务器(Ubuntu20.04系统)如何从“NVIDIA 525+CUDA 12.0”更换为“NVIDIA 515+CUDA 11.7”。 操作步骤 卸载原有版本的NVIDIA和CUDA。