检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ModelArts在线服务预测时,如何提高预测速度? 部署在线服务时,您可以选择性能更好的“实例规格”提高预测速度。例如使用GPU资源代替CPU资源。 部署在线服务时,您可以增加“实例数”。
用户使用ma-cli制作自定义镜像失败,报错文件不存在(not found) 问题现象 用户使用ma-cli制作自定义镜像失败,报错文件目录不存在。
ModelArts在线服务和边缘服务有什么区别? 在线服务 将模型部署为一个Web服务,您可以通过管理控制台或者API接口访问在线服务。 边缘服务 云端服务是集中化的离终端设备较远,对于实时性要求高的计算需求,把计算放在云上会引起网络延时变长、网络拥塞、服务质量下降等问题。
在ModelArts中,支持在部署在线服务时开启AppCode认证(部署模型为在线服务中的“支持APP认证”参数)。对于已部署的在线服务,ModelArts支持修改其配置开启AppCode认证。 本文主要介绍如何修改一个已有的在线服务,使其支持AppCode认证并进行在线预测。
ModelArts在线服务预测请求体大小限制是多少? 服务部署完成且服务处于运行中后,可以往该服务发送推理的请求,请求的内容根据模型的不同可以是文本,图片,语音,视频等内容。
当基础镜像里的软件无法满足您的程序运行需求时,您可以基于这些基础镜像制作一个新的镜像并进行训练。 训练基础镜像列表 ModelArts中预置的训练基础镜像如下表所示。
访问在线服务支持的访问通道 通过公网访问通道的方式访问在线服务 通过VPC访问通道的方式访问在线服务 通过VPC高速访问通道的方式访问在线服务 父主题: 将模型部署为实时推理作业
在ModelArts中使用自定义镜像创建在线服务,如何修改端口? 当模型配置文件中定义了具体的端口号,例如:8443,创建模型没有配置端口,或者配置了其他端口号,均会导致服务部署失败。您需要把模型中的端口号配置为8443,才能保证服务部署成功。
自定义镜像模型部署为在线服务时出现异常 问题现象 在部署在线服务时,部署失败。进入在线服务详情页面,“事件”页签,提示“failed to pull image, retry later”,同时在“日志”页签中,无任何信息。
使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments 问题现象 使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments...
ModelArts预置镜像更新说明 本章节提供了ModelArts预置镜像的变更说明 ,比如依赖包的变化,方便用户感知镜像能力的差异,减少镜像使用问题。 统一镜像更新说明 表1 统一镜像更新说明 镜像名称 更新时间 更新说明 mindspore_2.3.0-cann_8.0.rc1
通过JupyterLab在线使用Notebook实例进行AI开发 使用JupyterLab在线开发和调试代码 JupyterLab常用功能介绍 在JupyterLab使用Git克隆代码仓 在JupyterLab中创建定时任务 上传文件至JupyterLab 下载JupyterLab
推理专属预置镜像列表 ModelArts的推理平台提供了一系列的基础镜像,用户可以基于这些基础镜像构建自定义镜像,用于部署推理服务。 X86架构(CPU/GPU)的推理基础镜像 表1 TensorFlow AI引擎版本 支持的运行环境 镜像名称 URI 2.1.0 CPU GPU(
Notebook专属预置镜像列表 ModelArts开发环境提供Docker容器镜像,可作为预构建容器运行。预置镜像里面包含PyTorch,Tensorflow,MindSpore等常用AI引擎框架,镜像命名以AI引擎为主,并且每个镜像里面都预置了很多常用包,用户可以直接使用而无需重新安装
时序预测-time_series_v2算法部署在线服务预测报错 问题现象 在线服务预测报错:ERROR: data is shorter than windows。 原因分析 该报错说明预测使用的数据行数小于window超参值。
ModelArts部署在线服务时,如何避免自定义预测脚本python依赖包出现冲突? 导入模型时,需同时将对应的推理代码及配置文件放置在模型文件夹下。使用Python编码过程中,推荐采用相对导入方式(Python import)导入自定义包。
访问在线服务支持的认证方式 通过Token认证的方式访问在线服务 通过AK/SK认证的方式访问在线服务 通过APP认证的方式访问在线服务 父主题: 将模型部署为实时推理作业
访问在线服务支持的传输协议 使用WebSocket协议的方式访问在线服务 使用Server-Sent Events协议的方式访问在线服务 父主题: 将模型部署为实时推理作业
ModelArts统一镜像列表 统一镜像列表 ModelArts提供了ARM+Ascend规格的统一镜像,包括MindSpore、PyTorch。适用于开发环境,模型训练,服务部署,请参考统一镜像列表。 表1 MindSpore 预置镜像 适配芯片 适用范围 mindspore_2.3.0
使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错 问题现象 使用AI市场物体检测YOLOv3_Darknet53算法进行训练,将数据集切分后进行部署在线服务报错,日志如下:TypeError: Cannot interpret feed_dict key