检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在训练和推理过程中,通过数据脱敏、隐私计算等技术手段识别并保护敏感数据,有效防止隐私泄露,保障个人隐私数据安全。 内容安全:通过预训练和强化学习价值观提示(prompt),构建正向的意识形态。通过内容审核模块过滤违法及违背社会道德的有害信息。
中控模块:盘古-NLP-N1-基础功能模型 说明:该模块需要实现意图识别分类的功能。当输入意图识别模块的是政务问题时,控制下游调用检索模块;当输入不需要调用检索的非政务问题时,不调用检索,直接模型回答问题。实现方法为通过微调获得一个具有二分类能力的模型。
2024年12月发布的版本,支持全量微调、在线推理。 物体检测-N模型为中参数量模型,在保证计算效率的同时,具备较强的特征识别能力,提供高效的性能表现。 父主题: 训练CV大模型
图片中需要识别的目标是清晰可见的,没有遮挡、模糊等特征破坏问题。图片中的目标大小显著,目标物体在不放大图片的情况下人眼清晰可见。 画面光照良好,如果是在恶劣天气、户外、晚上等光照不好的场景,需要有补光设备保证良好的光照条件,需要保障在图片中人眼能清晰辨别目标。
Pangu-Predict-Table-Anom-2.0.0 2024年12月发布的版本,支持识别数据集中不符合预期模式或行为的数据点。
图2 撰写提示词 撰写完成后,单击“确定”,平台会自动识别插入的变量。提示词中识别的变量将展示在变量定义区域。 变量名称可以进行修改,如添加备注信息以便更好理解变量的作用。
更多 技术专题 技术、观点、课程专题呈现 云图说 通过云图说,带您了解华为云 OCR基础课程 介绍文字识别服务的产品、技术指导和使用指南 OCR系列介绍 文字识别服务在计算机视觉的重要性、基本技术和最新进展 智能客服 您好!
平台支持多种节点,包括开始、结束、大模型、意图识别、提问器、插件、判断、代码和消息节点。 创建工作流时,每个节点需要配置不同的参数,如输入和输出参数等,开发者可通过拖、拉、拽可视化编排更多的节点,实现复杂业务流程的编排,从而快速构建应用。
意图识别节点:该节点对用户输入的文本进行分类和分析,识别出用户的意图。主要包括以下两种意图: 文本翻译意图:系统识别出用户希望进行文本翻译的请求。 其他意图:包括普通对话、问答、或其他功能请求。该分支最终会引导文本到大模型节点进行处理。
水印识别 识别视频中是否包含水印。 字幕识别 识别视频中是否包含字幕。 Logo识别 识别视频中是否包含Logo。 视频黑边识别 识别视频中是否包含黑边。
不同模型在预训练、微调、模型评测、模型压缩、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。
油气行业:进行地质分层,例如基于地质数据,对不同地层进行分类,识别储层和非储层,提高勘探和开发效率。进行岩性识别,例如对不同岩石类型进行分类,帮助识别岩石的性质和特征,指导钻井和开采。进行流体识别,例如根据测井数据,识别储层中的油、气、水等流体类型。
图4 连接节点操作 配置“意图识别”节点。 鼠标拖动左侧“意图识别”节点至编排页面,连接“开始”节点和“意图识别”节点,单击“意图识别”节点进行配置。 图5 连接节点操作 在“参数配置”中,配置输入参数。 参数名称:默认参数名称为input。
因此,效果评估与优化应从以下几个方面进行详细分析: 评估工作流响应的准确性:从工作流响应准确性维度看,本实践可以评估意图识别节点响应意图的准确性。本实践的意图识别节点包含文本翻译意图和其他意图。
意图识别节点 101098 意图识别prompt模板请求失败。 检查模板占位符与输入是否匹配。 101097 意图识别调用大模型的prompt不符合模型输入的规范。 检查输入的prompt格式,消息的角色和内容。 101096 意图识别调用大模型失败。
因此,希望借助大模型消除语义歧义性,识别用户查询意图,并直接生成支持下游操作的结构化JSON信息。大模型的NL2JSON能力可以从自然语言输入抽取关键信息并转换为JSON格式输出,以供下游操作,从而满足该场景下客户需求。
不同模型在预训练、微调、模型压缩、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。
步骤4:配置意图识别节点 意图识别节点通过大模型推理分析用户输入,匹配预定义的意图关键字类别,并根据识别结果引导至相应的处理流程,通常位于工作流的前置位置。 意图识别节点为可选节点,若无需配置,可跳过该步骤。
Pangu-AI4S-Ocean_Ecology_24h-20241130 用于海洋生态要素预测 2024年11月发布的版本,支持在线推理、能力调测特性,可支持1个实例部署推理。
支持编排的节点类型包括:大模型节点、意图识别节点、提问器节点、插件节点、判断节点、代码节点、消息节点。 优点:高度可扩展,支持低代码开发。 缺点:对话交互的智能度较低,复杂场景下流程分支较多,维护难度较大。 父主题: 编排与调用应用