检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
升级配置后,需重新启动该部署任务,升级模式即为重启的方式。 修改部署配置 完成创建NLP大模型部署任务后,可以修改已部署模型的描述信息并升级配置,但不可替换模型。具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发
升级配置后,需重新启动该部署任务,升级模式即为重启的方式。 修改部署配置 完成创建科学计算大模型部署任务后,可以修改已部署模型的描述信息并升级配置,但不可替换模型。具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发
t开发平台预置的Python解释器预置插件。 “Python解释器插件”能够执行用户输入的Python代码,并获取结果。此插件为应用提供了强大的计算、数据处理和分析功能,用户只需将其添加到应用中,即可扩展功能。 准备工作 请确保您有预置的NLP大模型,并已完成模型的部署操作,详见《用户指南》“开发盘古NLP大模型
更高、更为复杂的问题。 基于提问生成作答要求 该指令根据输入的问题,使大模型泛化一个相应问题的作答要求,该要求与原问题内容不直接相关。该指令可与根据作答要求回答问题的指令进行编排,实现风格多样回答的合成。 根据样例生成相似问题_few-shot 该指令通过用户输入的多个问题样例,
> 提示词开发”。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务右侧“撰写”。 图1 提示词工程 在提示词撰写区域,单击“设为候选”,将当前撰写的提示词设置为候选提示词。 候选状态的提示词将保存至左侧导航栏的“候选”中。 图2 设为候选 父主题: 横向比较提示词效果
ss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化趋势。一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。
用户注册华为云时的账号,账号对其所拥有的资源及云服务具有完全的访问权限,可以重置用户密码、分配用户权限等。由于账号是付费主体,为了确保账号安全,建议您不要直接使用账号进行日常管理工作,而是创建用户并使用他们进行日常管理工作。 用户 由账号在IAM中创建的用户,是云服务的使用人员,具有身份凭证(密码和访问密钥)。
消息头之外的内容。若请求消息体中参数支持中文,则中文字符必须为UTF-8编码。 每个接口的请求消息体内容不同,也并不是每个接口都需要有请求消息体(或者说消息体为空),GET、DELETE操作类型的接口就不需要消息体,消息体具体内容需要根据具体接口而定。 将消息体加入后的请求如下所示,详细参数解释可参考文档API章节。
在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务右侧“撰写”。 在“撰写”页面,选择左侧导航栏中的“候选”。在候选列表中,勾选需要进行横向比对的提示词,并单击“创建评估”。 图1 创建评估 选择评估使用的变量数据集和评估方法。 评估用例集:根据选择的数据集,将待评估的提示词和数据集中的变量自动组装成完整的提示词,输入模型生成结果。
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据加工 > 标注任务”,单击页面右上角“创建标注任务”。 在“创建标注任务”页面选择需要标注的文本类数据集,并选择标注项。选择标注项时,不同类型的数据文件对应的标注项有所差异,可基于页面提示进行选择。
步骤: 选择合适的模型:根据任务目标选择适当的模型。 模型训练:使用处理后的数据集训练模型。 超参数调优:选择合适的学习率、批次大小等超参数,确保模型在训练过程中能够快速收敛并取得良好的性能。 开发阶段的关键是平衡模型的复杂度和计算资源,避免过拟合,同时保证模型能够在实际应用中提供准确的预测结果。
请求体参数配置完成后,单击“调试”,在响应结果中单击“响应头”,其中,X-Subject-Token参数的值为获取到的Token,如图4。 图4 获取Token值 获取的文本翻译API调用地址。华北-北京四区域的调用地址的格式如下: https://nlp-ext.cn-north-4.myhuaweicloud
登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据管理 > 数据评估”,单击界面右上角“创建评估任务”。 选择需要评估的加工数据集,并设置抽样样本的数量。 单击“下一步”,选择评估标准。单击“下一步”设置评估人员,单击“下一步”填写任务名称。
登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据管理 > 数据评估”,单击界面右上角“创建评估任务”。 选择需要评估的加工数据集,并设置抽样样本的数量。 单击“下一步”,选择评估标准。单击“下一步”设置评估人员,单击“下一步”填写任务名称。
复制到节点上,并执行注册命令完成设备的注册。 创建边缘资源池的流程见表1。 表1 创建边缘资源池 操作步骤 说明 准备工作 说明创建边缘资源池的前期准备。 步骤1:注册边缘资源池节点 说明注册边缘资源池节点步骤。 步骤2:搭建边缘服务器集群 说明搭建边缘服务器集群的步骤。 步骤3:安装Ascend插件
可以尝试修改参数并查看模型效果。以修改“核采样”参数为例,核采样控制生成文本的多样性和质量: 当“核采样”参数设置为1时,保持其他参数不变,单击“重新生成”,再单击“重新生成”,观察模型前后两次回复内容的多样性。 图2 “核采样”参数为1的生成结果1 图3 “核采样”参数为1的生成结果2
提示词工程 在“撰写”页面,选择左侧导航栏中的“候选”。在候选列表中,勾选需要进行横向比对的提示词,并单击“横向比较”。 图2 横向比较 进入到横向比较页面,下拉页面至“提示词效果比较”模块,比较提示词的效果,输入相同的变量值,查看两个提示词生成的结果。 图3 横向比对提示词效果 父主题:
靠和低成本的存储需求。因此,为了能够顺利进行存储数据、训练模型等操作,需要用户配置访问OBS服务的权限。 配置OBS访问授权步骤如下: 登录ModelArts Studio大模型开发平台首页。 配置OBS访问授权。 方式1:在首页顶部单击“此处”,在弹窗中选择授权项,并单击“确认授权”。
Face团队推出的一种大模型请求格式。 接口的响应体需要按照jsonpath语法要求进行填写,jsonpath语法的作用是从响应体的json字段中提取出所需的数据。 评测配置 评测类型 选择“人工评测”。 评测指标 由用户自定义评测指标并填写评测标准。 评测数据集 待评测的数据集。 评测结果存储位置
录和管理数据集的版权信息,确保数据的使用合法合规,并清晰地了解数据集的来源和相关的版权授权。通过填写这些信息,可以追溯数据的来源,明确数据使用的限制和许可,从而保护数据版权并避免版权纠纷。 单击页面右下角“立即创建”,回退至“导入任务”页面,在该页面可以查看数据集的任务状态,若状态为“运行成功”,则数据导入成功。