检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建图片类数据集标注任务 创建图片类数据集标注任务前,请先完成创建图片类数据集加工任务。 创建图片类数据集标注任务步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程 > 数据标注 > 标注管理”,单击页面右上角“创建标注任务”。
创建图片类数据集评估标准 ModelArts Studio大模型开发平台针对图片数据集预设的一套评估标准,涵盖了图像清晰度、分辨率、标签准确性、图像一致性等多个质量维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建图片类数据集评估任务。
创建图片类数据集评估任务 创建图片类数据集评估任务前,请先完成创建图片类数据集评估标准。 创建图片类数据集评估任务步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程 > 数据评估 > 评估任务”,单击界面右上角“创建评估任务”。
创建图片类数据集加工任务 创建图片类数据集加工任务前,请先完成“原始数据集”的创建与上线,具体步骤请参见导入数据至盘古平台。 创建图片类数据集加工任务步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
获取图片类数据集评估报告 ModelArts Studio大模型开发平台提供了详细的质量评估报告,帮助用户全面了解数据集的质量情况。获取数据集评估报告步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
审核图片类数据集标注结果 创建数据集标注任务时,如果设置了启用标注审核,在完成标注后可以在“标注审核”页面审核标注结果。 对于审核不合格的数据可以填写不合格原因并驳回给标注员重新标注。创建标注任务时如果指定了审核人员,则审核人员可以审核数据集,管理员(主账号)可以对所有数据集进行审核。
上线加工后的图片类数据集 加工后的图片类数据集需要执行上线操作,用于后续的数据标注、评估、发布任务,具体步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程 > 数据加工”,在数据集操作列单击“上线”,执行上线操作。
线。 图2 上线标注后的数据集 对不再使用的数据集可在操作列执行下线操作。若对当前标注数据集已执行发布操作发布图片类数据集,则不可将该标注数据集下线。 父主题: 标注图片类数据集
创建盘古图片类数据集标注任务 场景描述 此示例演示了如何快速创建图片Caption数据标注任务。您将学习如何设置任务参数、配置标注要求并进行标注。 准备工作 请提前准备数据并上传至OBS服务,上传步骤请详见通过控制台快速使用OBS。 操作流程 登录ModelArts Studio大模型开发平台,进入所需空间。
乱码和无意义的字符����� 图片类加工算子能力清单 表2 图片类加工算子功能表 算子分类 算子名称 算子描述 数据过滤 图片元数据过滤 基于图片存储大小、宽高比属性进行图片/图文数据清洗。 图片去重 通过把图片结构化处理后,过滤重复的图片/图文对数据。 数据打标 图片鉴黄评分 对图片的涉黄程度进
务场景选择“图片+Caption”、“图片+QA对”类型的数据。 图2 创建图片类数据集发布任务 设置发布方式。图片类数据集可选两种发布方式:“单个数据集”、“混合数据集”。选择数据集时,默认选择当前空间数据集,如果用户具备其他空间的访问权限,可以选择来自其他空间的数据集。 若选
标注图片类数据集 创建图片类数据集标注任务 审核图片类数据集标注结果 上线标注后的图片类数据集 父主题: 标注数据集
加工图片类数据集 创建图片类数据集加工任务 上线加工后的图片类数据集 父主题: 加工数据集
评估图片类数据集 创建图片类数据集评估标准 创建图片类数据集评估任务 获取图片类数据集评估报告 父主题: 评估数据集
式示例如下: 图片+QA对 图片支持tar,QA对支持jsonl 图片+QA对是指将一张图片和与之相关的问题及答案配对在一起,用于训练模型让其能够理解图片内容并回答与图片相关的问题。 图片:图片以tar包格式存储,可以多个tar包。tar包存储原始的图片,每张图片命名要求唯一(如abc
其他类数据集格式要求 除文本、图片、视频、气象、预测类数据集外,用户训练模型时如果使用较特殊的数据集,ModelArts Studio大模型开发平台支持导入用户自定义的数据集。 例如,在训练CV类算法(如图片分类、图片分割、图片检测等任务)时,用户需使用“其他”类型的数据集。 其
段落特征过滤 根据如下特征过滤: 段落重复率。 段落非中文字符占比。 段落完整性。 句子特征过滤 根据如下特征过滤: 过滤平均句长小于阈值的文档。 词语特征过滤 根据如下特征过滤: 词个数。 平均词长度。 语种过滤 通过语种识别模型得到文档的语言类型,筛选所需语种的文档。 段落结尾不完整句子过滤
场景介绍 在金融场景中,客户日常业务依赖大量报表数据来支持精细化运营,但手工定制开发往往耗费大量人力。因此,希望借助大模型消除语义歧义性,识别用户查询意图,并直接生成支持下游操作的结构化JSON信息。大模型的NL2JSON能力可以从自然语言输入抽取关键信息并转换为JSON格式输出
练和预测需要使用特殊的Prompt,需要注意保持一致。 中控模块:盘古-NLP-N1-基础功能模型 说明:该模块需要实现意图识别分类的功能。当输入意图识别模块的是政务问题时,控制下游调用检索模块;当输入不需要调用检索的非政务问题时,不调用检索,直接模型回答问题。实现方法为通过微调获得一个具有二分类能力的模型。
1),数值越高美感越好,评分>0.95可视为视频基础质量较高的视频。 水印识别 识别视频中是否包含水印。 字幕识别 识别视频中是否包含字幕。 Logo识别 识别视频中是否包含Logo。 视频黑边识别 识别视频中是否包含黑边。 密集文字识别 识别视频中是否包含密集文字,达到密集文字面积占比的视频则为含