检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
0_pl_sft_13b.sh 。 修改模型训练脚本中的配置,参数详解可查看训练参数说明,其中【GBS、MBS、TP、PP】参数值可参考模型推荐参数、NPU卡数设置。 对于Yi系列模型、ChatGLMv3-6B和Qwen系列模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。
|──llm_tools # 推理工具 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在 scripts 文件夹中。 ${workdir}(例如/home/ma-user/ws ) |──llm_train
表1 路径参数 参数 是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 delete_source
/v2/{project_id}/processor-tasks/{task_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 task_id 是 String 数据处理任务ID。 请求参数 无 响应参数 状态码: 200
ep_execution_id}/metrics 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 workflow_id 是 String 工作流的ID。 execution_id 是 String
准备FP8至BF16权重转换脚本fp8_cast_bf16.py,具体脚本内容参见权重转换脚本文件fp8_cast_bf16.py。权重转换需要使用有CPU资源的机器,建议直接登录Lite Server节点执行权重转换。 在Server机器上创建权重转换后的存放目录${path-to-file}/deepseekV3
{task_id}/save-image-job 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 training_job_id 是 String 训练作业ID。获取方法请参见查询训练作业列表。
/v2/{project_id}/search-algorithms 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 无 响应参数 状态码:200 表2 响应Body参数 参数 参数类型 描述 search_algo_count
dataset_id 是 String 数据集ID。 label_name 是 String 标签名称。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 label_type 否 Integer
/v2/{project_id}/processor-tasks 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 limit 否 Integer 指定每一页返回的最大条目数,取值范围[1
/v2/{project_id}/workforces 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 limit 否 Integer 指定每一页返回的最大条目数,取值范围[1
置信度,数值类型,范围0<=confidence<=1,表示机器标注的置信度。 creation_time String 创建该标注的时间。是用户写入标注的时间,不是Manifest生成时间。 annotated_by String 标注人。 annotation_format String
yaml相对或绝对路径,此配置文件为训练最优配置参数。 --baseline <baseline>:<可选>GP-Ant8机器性能基线yaml文件路径,用户可自行修改,不填则使用工具自带基线配置,默认基线配置样例如下: --o <output_dir>: <可选>任务完成输出excel表格路径,默认为"
类型type、属性properties,必须属性required 、定义definitions等,JSON Schema通过定义对象属性、类型、格式的方式来引导模型生成一个包含用户信息的JSON对象。 其优势主要如下: 上下文引导:通过提供特定的提示或上下文信息,模型可以更好地理解生成内容的方向。 约束生成:可以设定
String 模型来源的类型,当前仅可取值auto,用于区分通过自动学习部署过来的模型(不提供模型下载功能);用户通过训练作业部署的模型不设置此值。默认值为空。 model_type 是 String 模型类型,取值为:TensorFlow/MXNet/Spark_MLlib/S
行模型的性能。 AKG的配置也是在模型转换阶段进行配置(即执行converter_lite命令时),通过指定对应的配置文件akg.cfg,设置对应的akg优化级别,并且在模型转换时参考样例进行对应的配置。 # akg.cfg [graph_kernel_param] opt_level=2
Ratio(双千分之一)和Five Thousandths Err Ratio(双千分之五)这几种评价指标,工具通过阈值过滤筛选出不达标API的输入输出提示用户进行重点关注。使用步骤如下: 通过pip安装msprobe工具。 # shell pip install mindstudio-probe
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改