检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
(此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 TRAIN_ITERS 100 表示训练step迭代次数,根据实际需要修改。
在“版本管理”页面中,选择对应的数据集版本,在数据集版本基本信息区域,单击“设置为当前版本”。设置完成后,版本名称右侧将显示为“当前版本”。 图1 设置当前版本 只有状态为“正常”的版本,才能被设置为当前版本。 删除数据集版本 登录ModelArts管理控制台,在左侧菜单栏中选
/usr -name *libcudart.so*); 设置环境变量LD_LIBRARY_PATH,设置完成后,重新下发作业即可。 例如so文件的存放路径为:/use/local/cuda/lib64,LD_LIBRARY_PATH设置如下: export LD_LIBRARY_PAT
按需选择计算规格。单击“选择”,在弹窗中选择资源规格并设置运行时长控制,单击“确定”。 在“所在区”选择计算规格所在的区域。默认显示全部区域的计算规格。 选择计算规格不可用的资源会置灰。右侧“配置信息”区域会显示计算规格的详细数据,AI Gallery会基于资产和资源情况分析该任务是否支持设置“商品数量”,用户可以基于业务需要选择任务所需的资源卡数。
表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 TRAIN_ITERS 100
该方式主要是通过模型替换,先定位出具体哪个模型引入的误差,进一步诊断具体的模型中哪个算子或者操作导致效果问题,模型替换原理如下图所示。通过设置开关选项(是否使用onnx模型),控制模型推理时,模型使用的是onnx模型或是mindir的模型。 图1 精度诊断流程 一般情况下,onn
如何将多个物体检测的数据集合并成一个数据集? 可以在OBS桶中创建一个父级目录,目录下面设置不同的文件夹,将多个数据集分别导出到这些文件夹里面,最后用父目录创数据集即可。 登录ModelArts管理控制台,选择“数据管理>数据集”进入数据集概览页,单击右上角“导出”,将对应的数据
alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this
alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this
在ModelArts管理控制台,使用创建好的AI应用部署为在线服务。 登录云监控服务CES管理控制台,设置ModelArts服务的告警规则并配置主题订阅方式发送通知。具体操作请参考设置告警规则。 当配置完成后,在左侧导航栏选择“云服务监控 > ModelArts”即可查看在线服务的请求情况和资源占用情况,如下图所示。
添加部署上线使用权限。在统一身份认证服务页面的左侧导航选择“权限管理 > 权限”,单击右上角的“创建自定义策略”,设置策略。 添加部署上线使用权限。 “策略名称”:设置自定义策略名称,例如:service。 “策略配置方式”:选择JSON视图。 “策略内容”:填入如下内容。 {
准备代码 本教程中用到的模型软件包如下表所示,请提前准备好。 软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表1所示。 表1 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.909-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
重置节点后无法正常使用? 问题现象 当ModelArts Lite的CCE集群在资源池上只有一个节点,且用户设置了volcano为默认调度器时,在ModelArts侧进行重置节点的操作后,节点无法正常使用,节点上的POD会调度失败。 原因分析 在ModelArts侧进行节点重置后
(此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 TRAIN_ITERS 100 表示训练step迭代次数,根据实际需要修改。
(此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 TRAIN_ITERS 100 表示训练step迭代次数,根据实际需要修改。
(此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 TRAIN_ITERS 100 表示训练step迭代次数,根据实际需要修改。
准备代码 本教程中用到的模型软件包如下表所示,请提前准备好。 软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表1所示。 表1 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.906-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
如果您持有多台到期日不同的专属资源池,可以将到期日统一设置到一个日期,便于日常管理和续费。 图2展示了用户将两个不同时间到期的资源,同时续费一个月,并设置“统一到期日”后的效果对比。 图2 统一到期日 更多关于统一到期日的规则请参见如何设置统一到期日。 父主题: 续费
16,32 # 设置动态分档的档位,根据实际情况设置,另外请不要设置档位1(DeepSeek V2 236B W8A8 模型建议最大设置4个档位) export VLLM_ENGINE_ITERATION_TIMEOUT_S=1500 # 设置vllm请求超时时间(DeepSeek
co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 在容器中使用ma-user用户运行以下命令下载并安装AutoAWQ源码。 git clone -b v0.2.5 https://github.com/casper-hansen/AutoAWQ