检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
团队标注使用说明 数据标注任务中,一般由一个人完成,但是针对数据集较大时,需要多人协助完成。ModelArts提供了团队标注功能,可以由多人组成一个标注团队,针对同一个数据集进行标注管理。 团队标注功能仅在以下Region支持:华北-北京四、华北-北京一、华东-上海一、华南-广州
创建在线服务包 功能介绍 计费工作流购买资源。 接口约束 无 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/workfl
通过PyCharm远程使用Notebook实例 使用PyCharm Toolkit插件连接Notebook 使用PyCharm手动连接Notebook 使用PyCharm上传数据至Notebook 父主题: 使用Notebook进行AI开发调试
步骤六:预测分析 运行完成的工作流会自动部署相应的在线服务,您只需要在相应的服务详情页面进行预测即可。 在服务部署节点单击“实例详情”或者在ModelArts管理控制台,选择“模型部署 > 在线服务”,单击生成的在线服务名称,即可进入在线服务详情页。 在服务详情页,单击选择“预测”页签。
在Notebook中使用Moxing命令 MoXing Framework功能介绍 Notebook中快速使用MoXing mox.file与本地接口的对应关系和切换 MoXing常用操作的样例代码 MoXing进阶用法的样例代码 父主题: 使用Notebook进行AI开发调试
部署在线服务出现报错No CUDA runtime is found 问题现象 部署在线服务出现报错No CUDA runtime is found,using CUDA_HOME='/usr/local/cuda'。 原因分析 从日志报错信息No CUDA runtime is
CUDA runtime is found 使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错 使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments 内存不足如何处理? 父主题: 推理部署
准备好密钥对文件。 密钥对在用户第一次创建时,自动下载,之后使用相同的密钥时不会再有下载界面(用户一定要保存好),或者每次都使用新的密钥对。 Step1 安装SSH工具 下载并安装SSH远程连接工具,以PuTTY为例,下载链接。 Step2 使用puttygen将密钥对.pem文件转成.ppk文件
步骤六:预测分析 运行完成的工作流会自动部署相应的在线服务,您只需要在相应的服务详情页面进行预测即可。 在服务部署节点单击“实例详情”或者在ModelArts管理控制台,选择“模型部署 > 在线服务”,单击生成的在线服务名称,即可进入在线服务详情页。 在服务详情页,单击选择“预测”页签。
时序预测-time_series_v2算法部署在线服务预测报错 问题现象 在线服务预测报错:ERROR: data is shorter than windows。 原因分析 该报错说明预测使用的数据行数小于window超参值。 在使用订阅算法时序预测-time_series_v2
当您需要使用集群资源时,可以使用kubectl工具或k8s API来下发作业。此外,ModelArts还提供了扩缩容、驱动升级等功能,方便您对集群资源进行管理。 图2 使用流程 推荐您根据以下使用流程对Lite Cluster进行使用。 资源开通:您需要开通资源后才可使用Lite
练和推理工作中的需求。 本文旨在帮助您了解Lite Server的基本使用流程,帮助您快速上手,使用流程包含以下步骤。 图1 使用流程 资源开通 由于Server为一台裸金属服务器,因此需要先购买资源后才能使用。 首先请联系客户经理确认Server资源方案,部分规格为受限规格,因此需要申请开通您所需的资源规格。
径。 检查使用的资源是否为CPU,CPU的“/cache”与代码目录共用10G,可能是空间不足导致,可在代码中使用如下命令查看磁盘大小。 os.system('df -hT') 磁盘空间满足,请执行5。 磁盘空间不足,请您使用GPU资源。 如果是在Notebook使用MoXing
给子账号配置部署上线基本使用权限 场景描述 本文介绍部署上线场景下子账号所需的基本使用权限,您可参考权限清单新增对应业务场景的权限。示例场景为授权子账号权限,使其能够在开发环境Notebook中使用基础镜像构建一个新的推理镜像,并完成模型的创建,部署为在线服务。 权限清单 权限 表1
自定义镜像模型部署为在线服务时出现异常 问题现象 在部署在线服务时,部署失败。进入在线服务详情页面,“事件”页签,提示“failed to pull image, retry later”,同时在“日志”页签中,无任何信息。 图1 部署在线服务异常 解决方法 出现此问题现象,通常
时表示模型可以使用。 步骤三:使用订阅模型部署在线服务 模型订阅成功后,可将此模型部署为在线服务 在展开的版本列表中,单击“部署 > 在线服务”跳转至部署页面。 图2 部署模型 在部署页面,参考如下说明填写关键参数。 “名称”:自定义一个在线服务的名称,也可以使用默认值,此处以“商超商品识别服务”为例。
使用Notebook进行代码调试 背景信息 Notebook使用涉及到计费,具体收费项如下: 处于“运行中”状态的Notebook,会消耗资源,产生费用。根据您选择的资源不同,收费标准不同,价格详情请参见产品价格详情。当您不需要使用Notebook时,建议停止Notebook,避免产生不必要的费用。
Lite Cluster资源使用 在Lite Cluster资源池上使用Snt9B完成分布式训练任务 在Lite Cluster资源池上使用ranktable路由规划完成Pytorch NPU分布式训练 在Lite Cluster资源池上使用Snt9B完成推理任务
Lite Server资源使用 LLM/AIGC/数字人基于Server适配NPU的训练推理指导 GPT-2基于Server适配PyTorch GPU的训练推理指导
例如您的模型是Pytorch框架,部署为在线服务时出现告警:ModuleNotFoundError: No module named ‘model_service.tfserving_model_service’,则需要您在推理代码customize_service.py里使用from model_service