检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用AI Gallery在线推理服务部署模型 AI Gallery支持将训练的模型或创建的模型资产部署为在线推理服务,可供用户直接调用API完成推理业务。 约束限制 如果模型的“任务类型”是“文本问答”或“文本生成”,则支持在线推理。如果模型的“任务类型”是除“文本问答”和“文本
ModelArts支持通过JupyterLab工具在线打开Notebook,开发基于PyTorch、TensorFlow和MindSpore引擎的AI模型。具体操作流程如图1 使用JupyterLab在线开发调试代码所示。 图1 使用JupyterLab在线开发调试代码 操作步骤 创建Notebook实例。
通过JupyterLab在线使用Notebook实例进行AI开发 使用JupyterLab在线开发和调试代码 JupyterLab常用功能介绍 在JupyterLab使用Git克隆代码仓 在JupyterLab中创建定时任务 上传文件至JupyterLab 下载JupyterLab文件到本地
表1 在线服务配置 参数 说明 名称 在线服务名称。 状态 在线服务当前状态。 来源 在线服务的来源。 服务ID 在线服务的ID。 描述 您可以单击编辑按钮,添加服务描述。 资源池 当前服务使用的资源池规格。如果使用公共资源池部署,则不显示该参数。 个性化配置 您可以为在线服务的
向数据传输。 前提条件 在线服务部署时需选择“升级为WebSocket”。 在线服务中的模型导入选择的镜像需支持WebSocket协议。 约束与限制 WebSocket协议只支持部署在线服务。 只支持自定义镜像导入模型部署的在线服务。 调用API访问在线服务时,对预测请求体大小和预测时间有限制:
查看操作 在ModelArts管理控制台的左侧导航栏中选择“模型部署 > 在线服务”,在服务列表中,您可以单击名称/ID,进入服务详情页面。 在服务详情页面,切换到“事件”页签,查看事件信息。 父主题: 管理同步在线服务
在云监控平台查看在线服务性能指标 ModelArts支持的监控指标 为使用户更好地掌握自己的ModelArts在线服务和对应模型负载的运行状态,云服务平台提供了云监控。您可以使用该服务监控您的ModelArts在线服务和对应模型负载,执行自动实时监控、告警和通知操作,帮助您更好地了解服务和模型的各项性能指标。
图、各种指标随时间的变化趋势以及训练中使用到的数据信息,相关概念请参考TensorBoard官网。 TensorBoard可视化工具当前仅支持在PyTorch和TensorFlow引擎中使用,不支持在MindSpore引擎或其他AI引擎中使用。 前提条件 为了保证训练结果中输出S
模型使用CV2包部署在线服务报错 问题现象 使用CV2包部署在线服务报错。 原因分析 使用OBS导入元模型,会用到服务侧的标准镜像,标准镜像里面没有CV2依赖的so的内容。所以ModelArts不支持从对象存储服务(OBS)导入CV2模型包。 处理方法 需要您把CV2包制作为自定
'obs://bucket_name/sub_dir_0') 使用OBS或ModelArts SDK将OBS中的文件下载到本地。 方式一:使用OBS进行下载 在OBS中,可以将样例中的“obs_file.txt”下载到本地。如果您的数据较多,推荐OBS Browser+下载数据或文件夹。使用OBS下载文件的操作指导,请参见下载文件。
集成在线服务API至生产环境中应用 针对已完成调测的API,可以将在线服务API集成至生产环境中应用。 前提条件 确保在线服务一直处于“运行中”状态,否则会导致生产环境应用不可用。 集成方式 ModelArts在线服务提供的API是一个标准的Restful API,可使用HTTP
管理同步在线服务 查看在线服务详情 查看在线服务的事件 管理在线服务生命周期 修改在线服务配置 在云监控平台查看在线服务性能指标 集成在线服务API至生产环境中应用 设置在线服务故障自动重启 父主题: 使用ModelArts Standard部署模型并推理预测
前提条件 使用MindSpore引擎编写训练脚本时,为了保证训练结果中输出Summary文件,您需要在脚本中添加收集Summary相关代码。 将数据记录到Summary日志文件中的具体方式请参考收集Summary数据。 注意事项 在开发环境跑训练作业,在开发环境使用MindIn
设置在线服务故障自动重启 场景描述 当系统检测到Snt9b硬件故障时,自动复位Snt9B芯片并重启推理在线服务,提升了推理在线服务的恢复速度。 约束限制 仅支持使用Snt9b资源的同步在线服务。 只支持针对整节点资源复位,请确保部署的在线服务为8*N卡规格,请谨慎评估对部署在该节点的其他服务的影响。
重启服务使修改生效。在提交修改服务任务时,如果涉及重启,会有弹窗提醒。 在线服务参数说明请参见部署模型为在线服务。修改在线服务还需要配置“最大无效实例数”设置并行升级的最大节点数,升级阶段节点无效。 修改在线服务参数时,可通过增加一个自定义的环境变量参数,触发服务重启。例如,如果
在JupyterLab使用Git克隆代码仓 在JupyterLab中使用Git插件可以克隆GitHub开源代码仓库,快速查看及编辑内容,并提交修改后的内容。 前提条件 Notebook处于运行中状态。 打开JupyterLab的git插件 在Notebook列表中,选择一个实例,
的服务不支持停止。 删除服务 如果服务不再使用,您可以删除服务释放资源。 登录ModelArts管理控制台,在左侧菜单栏中选择“模型部署>在线服务”,进入在线服务管理页面。 单击在线服务列表“操作”列的“更多>删除”删除服务。 勾选在线服务列表中的服务,然后单击列表左上角“删除”按钮,批量删除服务。
部署。 约束与限制 需要申请单个模型大小配额和添加使用节点本地存储缓存的白名单。 需要使用自定义引擎Custom,配置动态加载。 需要使用专属资源池部署服务。 专属资源池磁盘空间需大于1T。 操作事项 申请扩大模型的大小配额和使用节点本地存储缓存白名单 上传模型数据并校验上传对象的一致性
Socket(双向实时),它更加轻量级且易于实现。 前提条件 在线服务中的模型导入选择的镜像需支持SSE协议。 约束与限制 SSE协议只支持部署在线服务。 只支持自定义镜像导入模型部署的在线服务。 调用API访问在线服务时,对预测请求体大小和预测时间有限制: 请求体的大小不超过12MB,超过后请求会被拦截。
在部署在线服务时开启AppCode认证(部署模型为在线服务中的“支持APP认证”参数)。对于已部署的在线服务,ModelArts支持修改其配置开启AppCode认证。 本文主要介绍如何修改一个已有的在线服务,使其支持AppCode认证并进行在线预测。 前提条件 提前部署在线服务,