检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
100:文本分类 101:命名实体 102:文本三元组 200:声音分类 201:语音内容 202:语音分割 400:表格数据集 600:视频标注 900:自由格式 description 否 String 标注任务的描述信息。 父主题: 标注任务管理
API请求的组成,并以调用IAM服务的获取用户Token接口说明如何调用API,Token可以用于调用其他API时的鉴权。 您还可以通过这个视频教程了解如何构造请求调用API:https://bbs.huaweicloud.com/videos/102987 。 请求URI 请求URI由如下部分组成:
使用Windows下生成的文本文件时报错找不到路径? 问题现象 当在Notebook中使用Windows下生成的文本文件时,文本内容无法正确读取,可能报错找不到路径。 原因分析 Notebook是Linux环境,和Windows环境下的换行格式不同,Windows下是CRLF,而Linux下是LF。
型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2 部署模
使用Windows下生成的文本文件时报错找不到路径? 问题现象 当在Notebook中使用Windows下生成的文本文件时,文本内容无法正确读取,可能报错找不到路径。 原因分析 Notebook是Linux环境,和Windows环境下的换行格式不同,Windows下是CRLF,而Linux下是LF。
是否必选 参数类型 描述 coefficient 否 String 根据难度系数筛选。 frame_in_video 否 Integer 视频中某帧。 hard 否 String 样本级别是否难例。可选值如下: 0:非难例样本 1:难例样本 import_origin 否 String
作为调用发起方的客户端无法访问已经获取到的推理请求地址 问题现象 完成在线服务部署且服务处于“运行中”状态后,已经通过调用指南页面的信息获取到调用的server端地址,但是调用发起方的客户端访问该地址不通,出现无法连接、域名无法解析的现象。 原因分析 在调用指南页签中显示的调用地
初始化。 因此,推荐在创建AI应用时配置健康检查,并设置合理的延迟检测时间, 实现实际业务的是否成功的检测,确保服务部署成功。 父主题: 在线服务
使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错 问题现象 使用AI市场物体检测YOLOv3_Darknet53算法进行训练,将数据集切分后进行部署在线服务报错,日志如下:TypeError: Cannot interpret feed_dict key
objects 需要进行自动标注的样本标注信息列表。 stop_time 否 Integer 超时等待时间(单位是分钟),默认15分钟,此参数仅视频自动标注场景使用。 time 否 String 主动学习中的时间戳。 train_data_path 否 String 已有训练数据集路径。
单击操作列“部署>在线服务”,将模型部署为在线服务。 图6 部署在线服务 在“部署”页面,参考下图填写参数,然后根据界面提示完成在线服务创建。本案例适用于CPU规格,节点规格需选择CPU。如果有免费CPU规格,可选择免费规格进行部署(每名用户限部署一个免费的在线服务,如果您已经部
ster”已指向最新一次的提交。同时在GitHub对应仓库的commit记录中也可以查找到对应的信息。 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
SearchCondition 参数 参数类型 描述 coefficient String 根据难度系数筛选。 frame_in_video Integer 视频中某帧。 hard String 样本级别是否难例。可选值如下: 0:非难例样本 1:难例样本 import_origin String 根据数据来源筛选。
tor,其运行环境就是cpu.2u。 部署在线服务Predictor,即将存储在OBS中的模型文件部署到线上服务管理模块提供的容器中运行,其环境规格(如CPU规格,GPU规格)由表3 predictor configs结构决定。 部署在线服务Predictor需要线上服务端根据A
若权重文件大于60G,创建AI应用会报错,提示模型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“模型部署 > 在线服务 > 部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的
在开发环境中创建MindInsight可视化作业流程 Step1 创建开发环境并在线打开 Step2 上传Summary数据 Step3 启动MindInsight Step4 查看训练看板中的可视化数据 Step1 创建开发环境并在线打开 在ModelArts控制台,进入“开发空间> Noteb
在开发环境中创建TensorBoard可视化作业流程 Step1 创建开发环境并在线打开 Step2 上传Summary数据 Step3 启动TensorBoard Step4 查看训练看板中的可视化数据 Step1 创建开发环境并在线打开 在ModelArts控制台,进入“开发空间 > Note
Open-Clip基于DevServer适配PyTorch NPU训练指导 Open-Clip广泛应用于AIGC和多模态视频编码器的训练。 方案概览 本方案介绍了在ModelArts的DevServer上使用昇腾NPU计算资源开展Open-clip训练的详细过程。完成本方案的部署
100:文本分类 101:命名实体 102:文本三元组 200:声音分类 201:语音内容 202:语音分割 400:表格数据集 600:视频标注 900:自由格式 label_task_id 否 String 基于标注任务创建数据集版本,标注任务ID。 description 否
SearchCondition 参数 参数类型 描述 coefficient String 根据难度系数筛选。 frame_in_video Integer 视频中某帧。 hard String 样本级别是否难例。可选值如下: 0:非难例样本 1:难例样本 import_origin String 根据数据来源筛选。