检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
视频数据集无法显示和播放视频 若无法显示和播放视频,请检查视频格式类型,目前只支持MP4格式。 父主题: Standard数据管理
支持 - 支持 支持 支持 - - 命名实体 支持 支持 - 支持 支持 支持 - - 文本三元组 支持 支持 - 支持 支持 支持 - - 视频 支持 支持 - 支持 支持 支持 - - 自由格式 支持 - 支持 支持 支持 支持 - - 表格型 表格 支持 支持 - 支持 支持 支持
文生视频模型训练推理 CogVideoX模型基于DevServer适配PyTorch NPU全量训练指导(6.3.911) Open-Sora1.2基于DevServer适配PyTorch NPU训练推理指导(6.3.910) Open-Sora-Plan1.0基于DevServer适配PyTorch
自动学习声音分类预测报错ERROR:input key sound is not in model 根据在线服务预测报错日志ERROR:input key sound is not in model inputs可知,预测的音频文件是空。预测的音频文件太小,换大的音频文件预测。 父主题:
mp4 ├── 2.mp4 ├── ... 每个 txt 与视频同名,为视频的标签。视频与标签应该一一对应。通常情况下,不使用一个视频对应多个标签。 如果为风格微调,请准备至少50条风格相似的视频和标签,以利于拟合。 修改CogVideo/sat/configs/cogvideox_*
Wav2Lip是一种基于对抗生成网络的由语音驱动的人脸说话视频生成模型。主要应用于数字人场景。不仅可以基于静态图像来输出与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换,输出与输入语音匹配的视频,俗称“对口型”。该技术的主要作用就是在将音频与图片、音频与视频进行合成时,口型能够自然。 方案概览
在线服务的API接口组成规则是什么? AI应用部署成在线服务后,用户可以获取API接口用于访问推理。 API接口组成规则如下: https://域名/版本/infer/服务ID 示例如下: https://6ac81cdfac4f4a30be95xxxbb682.apig.xxx
人工标注视频数据 由于模型训练过程需要大量有标签的视频数据,因此在模型训练之前需对没有标签的视频添加标签。通过ModelArts您可对视频添加标签,快速完成对视频的标注操作,也可以对已标注视频修改或删除标签进行重新标注。 视频标注仅针对视频帧进行标注。 开始标注 登录ModelA
在线服务 部署在线服务时,自定义预测脚本python依赖包出现冲突,导致运行出错 在线服务预测时,如何提高预测速度? 调整模型后,部署新版本AI应用能否保持原API接口不变? 在线服务的API接口组成规则是什么? 在线服务运行中但是预测失败时,如何排查报错是不是模型原因导致的 在
在线服务预测时,如何提高预测速度? 部署在线服务时,您可以选择性能更好的“计算节点规格”提高预测速度。例如使用GPU资源代替CPU资源。 部署在线服务时,您可以增加“计算节点个数”。 如果节点个数设置为1,表示后台的计算模式是单机模式;如果节点个数设置大于1,表示后台的计算模式为分布式的。您可以根据实际需求进行选择。
推理服务在线测试支持文件、图片、json三种格式。通过部署为在线服务Predictor可以完成在线推理预测。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景:部署在线服务Predictor的推理预测
ModelArts自动学习 视频介绍 02:59 ModelArts自动学习简介 ModelArts CodeLab 视频介绍 04:16 ModelArts CodeLab介绍 JupyterLab 视频介绍 03:32 JupyterLab简介 VS Code Toolkit 视频介绍 03:32
管理同步在线服务 查看在线服务详情 查看在线服务的事件 管理在线服务生命周期 修改在线服务配置 在云监控平台查看在线服务性能指标 集成在线服务API至生产环境中应用 设置在线服务故障自动重启 父主题: 使用ModelArts Standard部署模型并推理预测
在线服务预测报错MR.0105 问题现象 部署为在线服务,服务处于运行中状态,预测时报错:{ "erno": "MR.0105", "msg": "Recognition failed","words_result": {}}。 图1 预测报错 原因分析 请在“在线服务”详情页面
部署模型为在线服务 模型准备完成后,您可以将模型部署为在线服务,对在线服务进行预测和调用。 约束与限制 单个用户最多可创建20个在线服务。 前提条件 数据已完成准备:已在ModelArts中创建状态“正常”可用的模型。 由于在线运行需消耗资源,确保账户未欠费。 部署服务操作需要镜
服务部署 自定义镜像模型部署为在线服务时出现异常 部署的在线服务状态为告警 服务启动失败 服务部署、启动、升级和修改时,拉取镜像失败如何处理? 服务部署、启动、升级和修改时,镜像不断重启如何处理? 服务部署、启动、升级和修改时,容器健康检查失败如何处理? 服务部署、启动、升级和修改时,资源不足如何处理?
Standard数据管理提供了一套高效便捷的管理和标注数据框架。支持图片、文本、语音、视频等多种数据类型,涵盖图像分类、目标检测、音频分割、文本分类等多个标注场景,适用于计算机视觉、自然语言处理、音视频分析等AI项目场景。 ModelArts Standard数据管理模块重构中,当前
X为按顺序自动生成的数字),具体位置打印在日志中。 Step9 推理 对于大尺寸、长时间的视频强制需要多卡推理,具体要求见下图,绿色允许只用单卡推理,蓝色至少双卡推理。 图5 推理视频要求 单卡推理 python inference.py configs/opensora-v1-2/inference/sample
pu.py --ckpt-path $CKPT_PATH 在NPU和GPU机器使用上面生成的固定随机数,分别跑一遍单机单卡推理,比较生成的视频是否一致。在NPU推理前,需要将上面GPU单机单卡推理生成的"./noise_test1"文件夹移到NPU相同目录下。NPU和GPU的推理命令相同,如下。
docker exec -it ${container_name} bash Step6 安装Decord Decord是一个高性能的视频处理库,在昇腾环境中安装需要修改一些源码进行适配。 Decord建议安装在 /home/ma-user/lib中。 安装x264 mkdir